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Aim

Brief introduction of the key terms of IA in medical imaging
Evidence of its clinical effectiveness
Limitations and future perspectives
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“There is no function the computer
cannot do in radiology”

a monthly journal devoted to clinical radiology and allied sciences

PUBLISHED BY THE RADIOLOGICAL SOCIETY OF NORTH AMERICA, INC.
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omputers for image classification
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Computers for image classification
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Why Al for radiology?

Diagnostic errors play a role in up to 10% of patients deaths

Reporting error rate up to 20-30% more complex studies such as computed
tomography (CT) and magnetic resonance imaging (MRI)

> 101 050 radiology reports contain clinically significant errors

Committee on Diagnostic Error in Health Care. 2016 National Academies Press (US), Washington (DC).
Insights Imaging. 2017 Feb; 8(1): 171-182.
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Why Al for radiology?
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Some definitions

Artificial intelligence
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Convolutional Neural Networks (CNN)

A DEEP NEURAL NETWORK FOR LESION DETECTION

®
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Example

Mass Detection Mass Segmentation Mass Classification
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Diagnostic performance of Al
vs health care professionals

Liu et al. 2019. A comparison of deep learning
performance against health-care professionals
in detecting diseases from medical imaging: a
systematic review and meta-analysis. The
Lancet Digital Health 1, e271-e297.
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31587 records identified
31568 through database searching with duplicates
4308 from MEDLINE
14551 from Scopus
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2789 from IEEE
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20530 records screened |
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122 full-text articles assessed for eligibility I
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6 no classification task
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2 no deep learning model
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24 no comparison to health-care
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5 no outcomes
1 not imaging
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information to allow contingency
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Diagnostic performance of Al vs health care

professionals

A Same out-of-sample validation sample
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Major challenges ahead

1. Explainability

2. Augmented intelligence

3. Quality and quantity of data
4. Privacy issues

5. Legal issues and liability

6. Biased A.l.
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Learn more

Liu et al. 2019. A comparison of deep learning performance against
health-care professionals in detecting diseases from medical imaging: a
systematic review and meta-analysis. The Lancet Digital Health 1,
e271-e297.

Haibe-Kains et al. Transparency and reproducibility in artificial intelligence.
Nature 586, E14-E16.

Meskd, B., Gordg, M., 2020. A short guide for medical professionals in the
era of artificial intelligence. npj Digital Medicine 3, 1-8.

European Society of Radiology (ESR), 2019. What the radiologist should
know about artificial intelligence - an ESR white paper. Insights Imaging 10,
44.



RIGAS STRADINA
UNIVERSITATE

Part Il Al Workflow for
Medical Imaging
Diagnosis: Critical steps
from acquisition to

prediction

Sergio Uribe, PhD, MSc, DDS
www.rsu.lv/bioinformatika



Aim

To identify key stages from image acquisition and imaging
protocols that allow the processing, annotation and use of
images for the use of artificial intelligence algorithms
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Critical steps

Aim: Proof of concept? Diagnostic accuracy? Patient outcomes?
Prospective or retrospective

Data de-identification
Data collection and curation

RIGAS STRADINA
UNIVERSITATE



Stanford University

SUNetlID Login

Center for Artificial Intelligence in Medicine & Imaging

About © People ™ Research™ Education Resources™ News&Events™ Engage”~

Hesources Shared Datasets

Shared Datasets

CheXpert ChestX rays

CheXpert: Chest Xray's

EchoNet-Dynamic
Cardiac Ultrasound

LERA- Lower Extremity
RAdiographs

MURA: MSK Xrays
MRNet: Knee MRI's
RSNA: Bone Age
RSNA: CT Brain
RSNA: Chest Xray's

EchoNet-Dynamic Cardiac Ultrasound
EchoNet-Dynamic is a datas “'[i’!":’,‘.,"'

Ok ec *or;rm-

und, videos from u
Center. Each apical-4-chamt

ejection fraction, end

Software Tools

COVID-19

R L N R O s e ey


https://aimi.stanford.edu/research/public-datasets

L

& > C @& dataverse.rsulv/dataverse/rsu/ * P % - ©® 9N . :

% Dataverse Add Data ~ Search ~ User Guide Support  Sergio Uribe ~

o1 Metrics 0 Downloads ¥« Contact (2 Share

The root dataverse.

| Search this dataverse... || QFind | Advanced Search

& Dataverses (0) This dataverse currently has no dataverses, datasets, or files. You can use the Email Dataverse Contact button above to ask about
= Datasets (0) this dataverse or request access for this dataverse.

| [ Files (0)

Copyright © 2020

Powered by Batave!se'

roject v. 4.18.1 build 267-a91d370


https://dataverse.rsu.lv/dataverse/rsu/

Critical steps

Aim: Proof of concept? Diagnostic accuracy? Patient outcomes?
Prospective or retrospective

Data de-identification

Data collection and curation

Reference standard

Dataset sampling strategies
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Types of datasets

Initial data set

Validation data Test data

Curateddata Performance monitoring Final model evaluation

Hyperparameter tuning

Initial model Trained model Fine tuned Deployment ready
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Critical steps

Aim: Proof of concept? Diagnostic accuracy? Patient outcomes?
Prospective or retrospective

Data de-identification

Data collection and curation

Reference standard

Dataset sampling strategies

Deep learning libraries and architectures
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Preprocessing and reconstruction

mEEn
Denoising and quality enhancement
Prediction
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Fig. 1 Potential clinical uses of deep learning techniques. Tasks such as monitoring of treatment response or prediction of survival, can be
Kderived from lesion detection, classification, and longitudinal follow-up




Metrics

Detection Segmentation Classification Prediction
Features -Bounding boxes -Lesion patch -Lesion patch -Lesion patch
-Masks -Full image at max diameter -Radiomic features -Time to recurrence
-Radiomics features -Survival time
-Masks -TRG
Model architectures  -CNN -U-Net -Fully connected -CNN
Performance metrics -Intersection over union (IOU)  -Dice score -Receiver operating characteristic (ROC) -ROC curve
-Mean average precision (mAP) -IOU -Accuracy -gzxccuracy
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Clinical

Physicians and surgeons

Problem formulation
Task definition and specifications
Eligibility criteria
Retrospective vs. prospective cohorting

Reference standard
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Project Manager

Imaging

Radiologists and technologists

Imaging examinations
Collection

Selection

Anonymization vs. de-identification

Lesions
Detection
Annotations and markups

Segmentation

Technical

Data scientists and computer scientists

Dataset
Visualization
Cleaning

Sampling:training, test and validation

Models
Framework, models and metrics
Training and fine tuning
Validation

Deployment
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Learn more

Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extractin gmore
information from medical images using advanced feature analysis. Eur J Cancer
48:441-446

Gebru T, Morgenstern J, Vecchione B et al (2018) Datasheets for datasets.
Available via https://arxiv.org/abs/1803.09010. Accessed 3 Sept 2020

SPIRIT-Al and CONSORT-AI Consensus Group, 2020. Guidelines for clinical trial
protocols for interventions involving artificial intelligence: the SPIRIT-AI
extension. Nat. Med. 26, 1351-1363.

SPIRIT-Al and CONSORT-AI Working Group, 2020. Reporting guidelines for
clinical trial reports for interventions involving artificial intelligence: the
CONSORT-AIl extension. Nat. Med. 26, 1364-1374.
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