



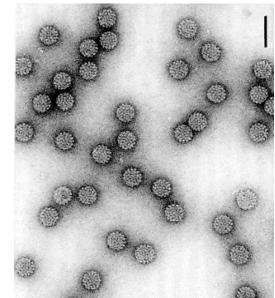

# HPV infection doesn't affect only girls and women

#### Ruth Tachezy

National Reference Laboratory for Papillomaviruses and Polyomaviruses, Public Health Institute Ostrava

Faculty of Science, Department of Genetics and Microbiology, Charles University, Prague

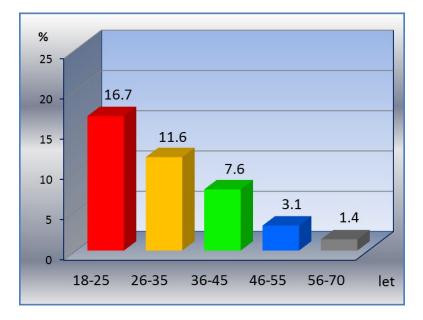




# Papillomaviruses

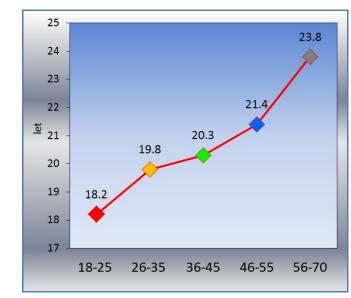
- Small DNA viruses 55 nm, non-enveloped, stabile, 8 000 pb
- Ubiquitous
- Evolutionary old viruses, evolved with their host
- Species specificity and tissue tropism they infect stratified mucous and skin epithelia of the high vertebra
- 198 genotypes, 5 genuses ( $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\mu$ ,  $\nu$ ),











# Changes in sexual behavior of the population

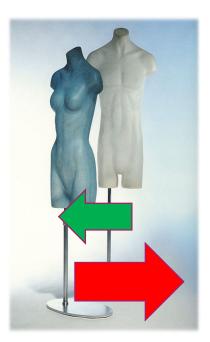
- The most frequent viral STD
- Earlier sexual debut
- Reduction of the monogamous relationship
- Better quality of life, sexual activity extended to older age

Y-percentage of women with the first sexual experience before 17 years of age X-current age



Y-average age of the first sexual experience X-current age




12x more

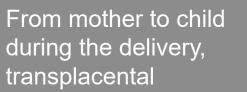
5.6x more

Minichiello et al., 2011 Lyons et al., 2011 Lindau et al., 2007

# Transmission

- Sexual hetero and homo; penetrative and non-penetrative
  - Prevalence of HPV DNA in virgins 2%
  - Cumulative incidence in 2 years non-penetrative sex YES 10% vs. NO 1% (Winer et al., 2003)
  - HPV-specific antibodies in virgins HPV 6/11/16/18 25/15/4/2% (Hamšíková et al. 2013)
  - Virgins after sexual debut HPV infected in 25%, within 2 years 41% (Hamšíková et al., 2013)
  - More efficient transmission from females to males (4x more frequent) (Hernandez et al., 2008)
  - HPV type specific concordance in couples (partial 66%, complete 41%) (Abalos et al., 2012, Rob et al., 2016)
  - Sexual behavior is a risk factor for HPV prevalence in oral cavity (0.9% vs. 7.5%) (Gillison et al., 2012)




# Transmission

Autoinoculation and heteroinoculation













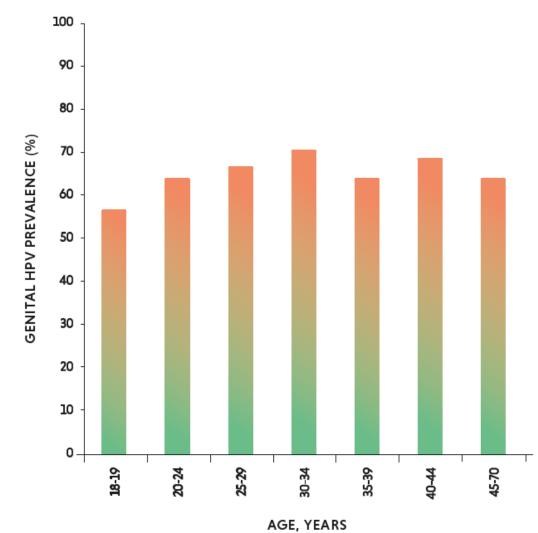


# Condom

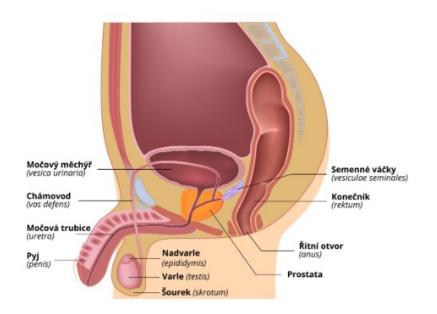
- 2000 FDA, CDC, NIH, I.S. Agency for International Development "Condom reduces the risk of pregnancy, HIV transmission, and among men, gonorrhea".
- 2006 Strong evidence that condom use reduces the risk of transmission of HIV, gonorrhea and chlamydia, and herpes simplex virus in both women and men".
- 2006 Winer a spol., NEJM, 354, 25, 2645-54 ,,evidence that condom reduces also the risk of HPV infection in women"
- Safer vs. safe sex

# HPV DNA prevalence in males

|           |                    |                       | ΑΝΥ ΗΡΥ ΤΥΡΕ                          |                         |              |                                   |           |                        |       |
|-----------|--------------------|-----------------------|---------------------------------------|-------------------------|--------------|-----------------------------------|-----------|------------------------|-------|
|           |                    | Prevalence            | Incidence rate pe<br>1,000 person-mon |                         |              | ledian time to<br>arance (months) |           |                        |       |
| Genital I | HPV                | 50.4%                 | 38.4                                  |                         |              | 7.5                               |           |                        |       |
| Anal HP   | V*                 | 12.0%                 | 8.1                                   |                         |              |                                   |           |                        |       |
| Oral HP   | V                  | 4.0%                  | 5.6                                   |                         | 6.9          |                                   | -         |                        |       |
|           | exual men.         | c 100 perso           | n var                                 | ICE (%)                 | 50<br>40     |                                   |           |                        |       |
| menu      | ence per           | 100 perse             | ni-ycais                              | ALEN                    | 30 -         |                                   |           |                        |       |
|           | penile/<br>scrotal | perineal/<br>perianal | anal                                  | ANAL HPV PREVALENCE (%) | 20 -<br>10 - |                                   |           |                        |       |
| MSW       | 6.8                | 1.9                   | ND                                    | AN                      | 0-           | Any HPV                           | Oncogenic | Oncogenic Nononcogenic | HPV16 |
| MSM       | 3.2                | 9.0                   | 16.8                                  |                         |              |                                   |           |                        |       |


Giuliano et al, 2011 and 2024; Sudenga et a., 2016; Pierce Campbell et al., 2015

MSW MSM


# HPV DNA prevalence in males

- In contrast to females is not age dependent
- Incidence 38 /1000 person-month
- Clearance of infection 7.5 months
- Risk factors:
- Race Asiatic
- Condom
- Circumcision
- Smoking
- STD





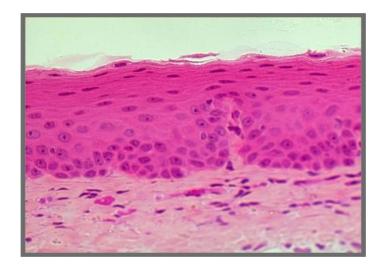
Giuliano et al., 2011;

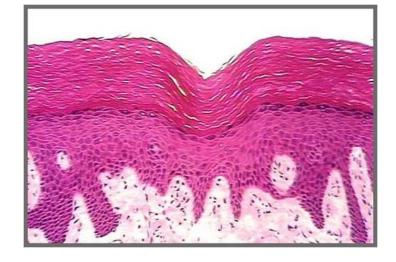


# HPV in healthy tissues of males

TABLE III. Prevalence of HPV in Healthy Tissue of Male Urogenital Tract

|                  | No. of patients | No. of samples | No. of HPV positive samples (%) |
|------------------|-----------------|----------------|---------------------------------|
| Foreskin         | 27              | 27             | 4 (14.8) <sup>a</sup>           |
| Prostate         | 51              | 80             | $2(2.5)^{b}$                    |
| Urinary bladder  | 15              | 29             | 0                               |
| Seminal vesicles | 54              | 77             | $2(2.6)^{c}$                    |
| Ductus deferens  | 27              | 40             | $2(5.0)^{d}$                    |
| Ureter           | 3               | 3              | 0                               |
| Total            | 74              | 256            | 10 (3.9)                        |


<sup>a</sup>HPV 16 in three samples, one sample positive for unknown type.


<sup>b</sup>Two samples positive for unknown type.

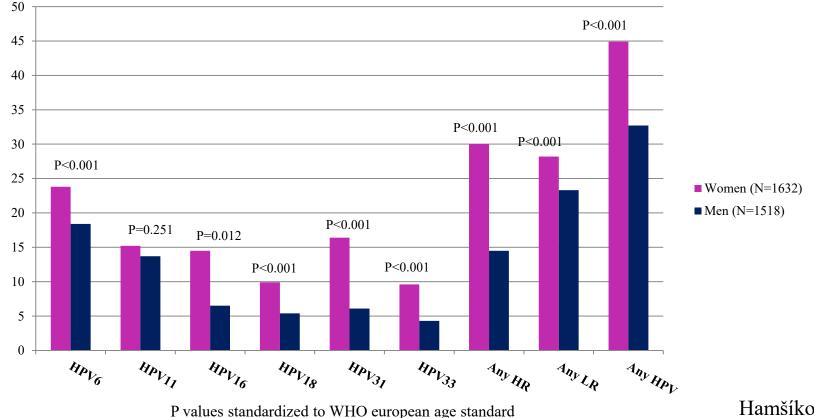
<sup>c</sup>HPV 52, one sample positive for unknown type.

<sup>d</sup>HPV 16, one sample positive for unknown type.

# Type of epithelium and immune response



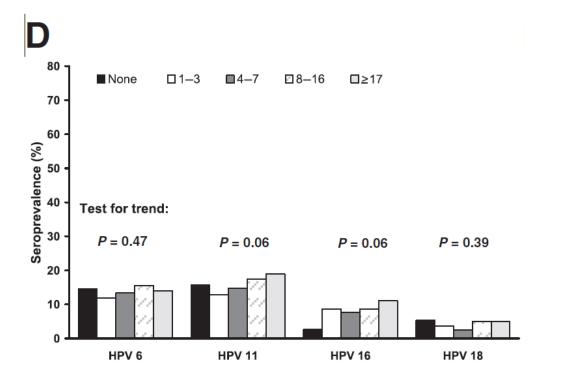



Squamous non-keratinizing epithelium (cornea, oral cavity, oesophagus, vagina, anus, cervix)

Squamous keratinizing epithelium (perianal area, penis)

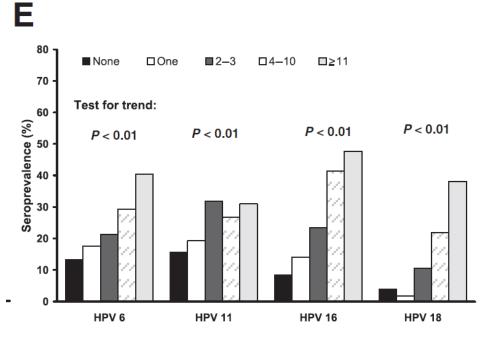
• Squamous non-keratinizing epithelium (mucosal) – easier access to lymphatic system, faster and stronger immune response

# Prevalence of HPV-specific antibodies in males vs. females


- The level of HPV-specific antibodies is lover in males vs. females (Lu et al., 2011; Newall et al., 2008; Markowitz et al., 2009; Michael et al., 2008)
- Czechia females 45%, males 33% (any HPV), 37% females, 29% males (any vaccine HPV type) (Hamšíková et al., 2012)
- Non-existing protection for reinfection (Pamnani et al., 2016)

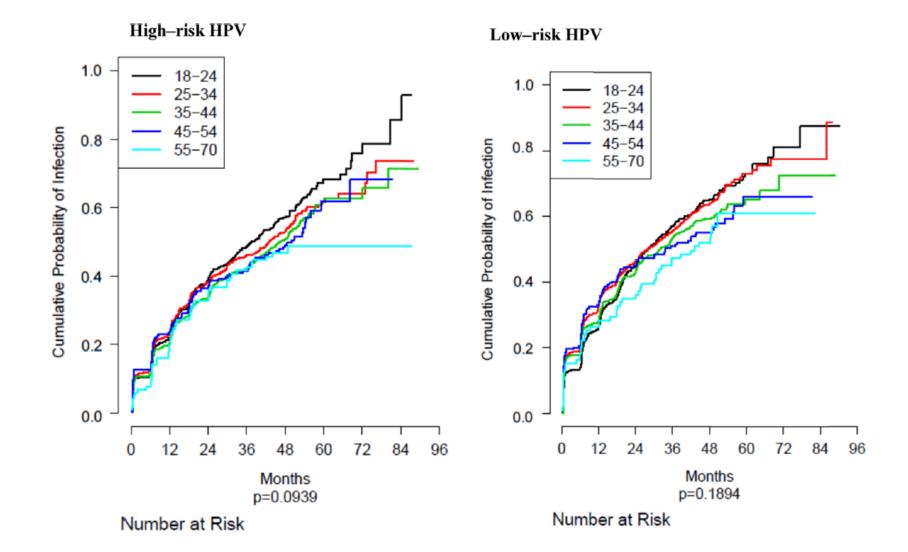


Hamšíková et al., STI, 2012


## **Prevalence of HPV-specific antibodies in males**

• Prevalence of HPV-specific antibodies in males is driven by the number of sexual partners and by a mode of sexual intercourse

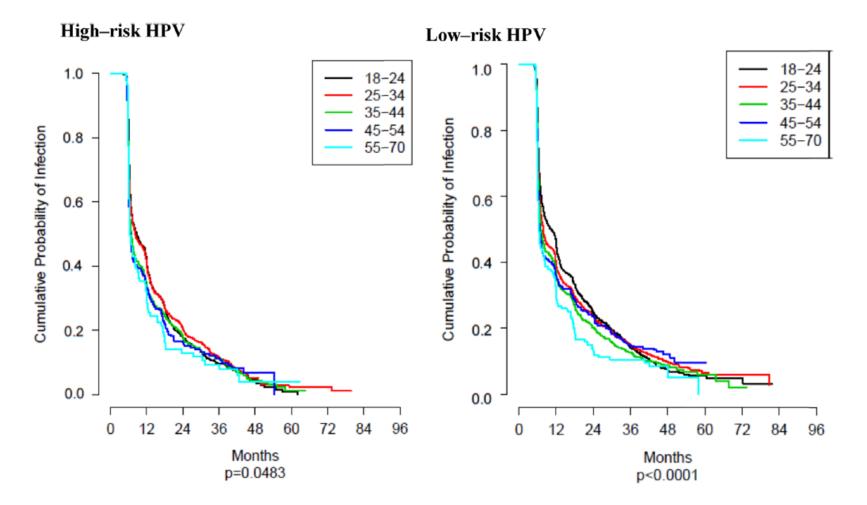



Number of female sex partners in MSW

#### Number of male anal sex partners (MSM, MSMW)



# Age-specific incidence of HPV infection in males

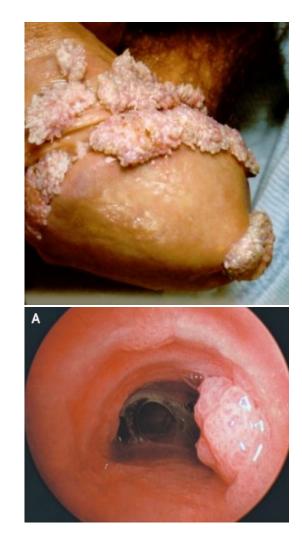

• Lower in younger age but not statistically different



Ingles a spol., 2015

# **Age-specific clearance of HPV infection in males**

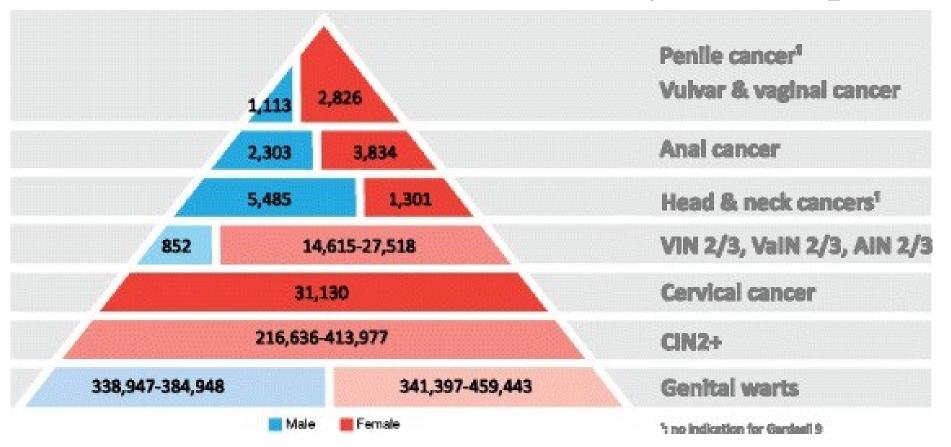
• No difference by age group




Ingles a spol., 2015

# Diseases caused by LR HPVs in males

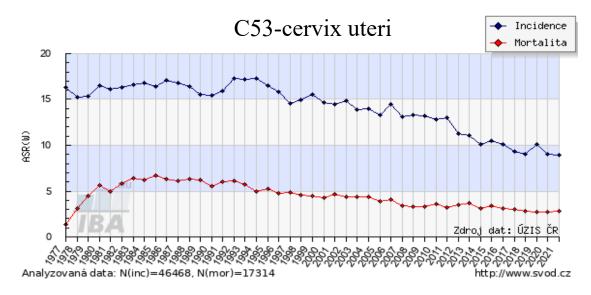
#### • Genital warts


- Czechia 17-55 years of age, questionnaire, 32,974 individuals, prevalence 5.8% (Petráš et al., 2015)
- Incubation time 5-12 months
- Progression in 6-22% HPV infected (Sudenga et al., 2016)
- Spontaneous clearance10-20%
- 65% of sexual partners develop GW
- Risk factor
  - External genital lesions of partner (65% of sexual partners develop GW)
  - Number of sexual partners
- Recurrent respiratory papillomatosis
- Juvenile and adult form
- Prevalence of 4.3 and 1.8 cases per 100,000 persons
- Men are affected more than women

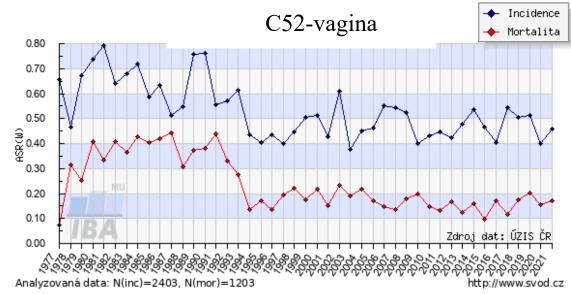


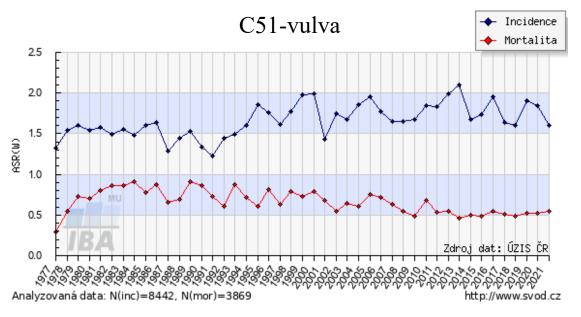
# Diseases caused by HR HPVs in males

- Anal precancerous lesions and carcinoma
- 91.5% in AIN1 and 93.9% in AIN2/3 (De Vuyst H et al. Int J Cancer 2009)
- 88% squamose HPV-associated
- Czechia 82% HPV-associated (Tachezy et al. 2011)
- Risk factor:
  - Sexual behaviour
  - MSW 12%, MSM 64%, HIV+ MSM 93%
- Penile precancerous lesions and carcinoma
- 51% HPV-associated
- Oropharyngeal carcinoma
- 31% HPV-associated, more in developed countries
- Czechia 62% HPV-associated (Tachezy et al., 2009)

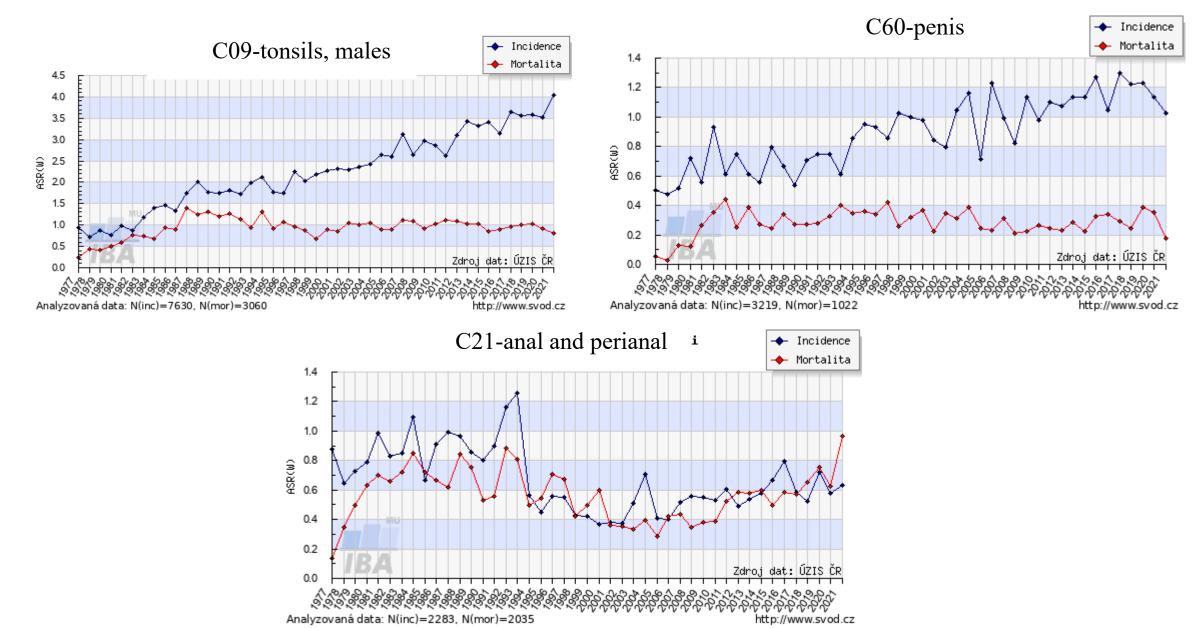

## **HPV-associated diseases annually in Europe**




Worldwide 1/3 carcinomas of infectious aetiology, HPV ~ 690,000/ year
9,500 / year in Europe males; 900 in Czechia
43,000 / year in Europe females;1600 in Czechia


Hartwig a spol., 2017

### Incidence and mortality of HPV-associated diseases in Czechia

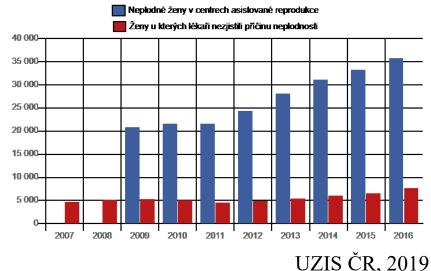



**Tendency of an increase 2006-16** Cervix -20,5% Vulva +12,5% Vagina +5.1%





### Incidence and mortality of HPV-associated diseases in Czechia




# HPV and assisted reproduction

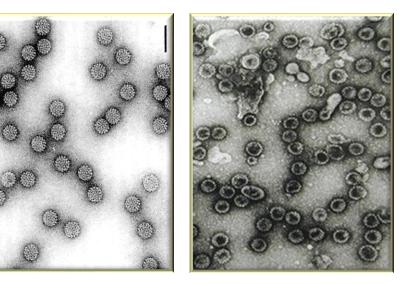
- In Czechia 20% of couples need AR
- men are infected lifelong at a high percentage, usually asymptomatic, and HPV is also present in the male reproductive tract
- HPV prevalence in semen and sperm is higher in infertile compared to healthy men
- HPV-infected sperm show poorer motility and morphology
- HPV binds to sperm via syndecan 1 in the equatorial part of the head and enters the cell
- infected sperm can transfer HPV to the oocyte, where the viral genes are transcribed
- HPV infection affects the development and implantation of the embryo
- HPV vaccination in men with HPV in their semen speeds up the clearance of the virus and increases the likelihood of successful ART

# HPV and assisted reproduction

- Evidence suggests that HPV infection affects sperm characteristics and thus male fertility
- Also likely to negatively affect the success of assisted reproduction
- Data suggest a possible benefit of including HPV detection in sperm donors and couples undergoing AR
- HPV vaccination could increase the success rate of AR in HPV-positive couples



## HPV genotypes by the disease


| Location                    | HPV type<br>(prevalence) | HPV type (prevalence) | HPV type               |
|-----------------------------|--------------------------|-----------------------|------------------------|
| Cervical carcinoma          | HPV16 (50%)              | HPV18 (12%)           | HPV31, HPV45,<br>HPV33 |
| Cervical<br>carcinoma-Asie  | HPV16 (50%)              | HPV18 (12%)           | HPV58, HPV33,<br>HPV52 |
| Other cancers               | HPV16                    |                       |                        |
| Genital warts               | HPV6/11 (90%)            |                       |                        |
| Laryngeal<br>papillomatosis | HPV6/11<br>(100%)        |                       |                        |


# **Primary prevention**

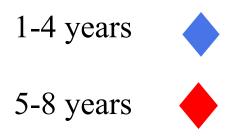
- Prophylactic vaccines, block viral entry into the cell
- HPV 6/11 90% of GW
- HPV 16/18 70% of cervical cancers
- Vaccination of children before coitarche
- Gender neutral vaccination
- Coverage
- No therapeutic effect ???

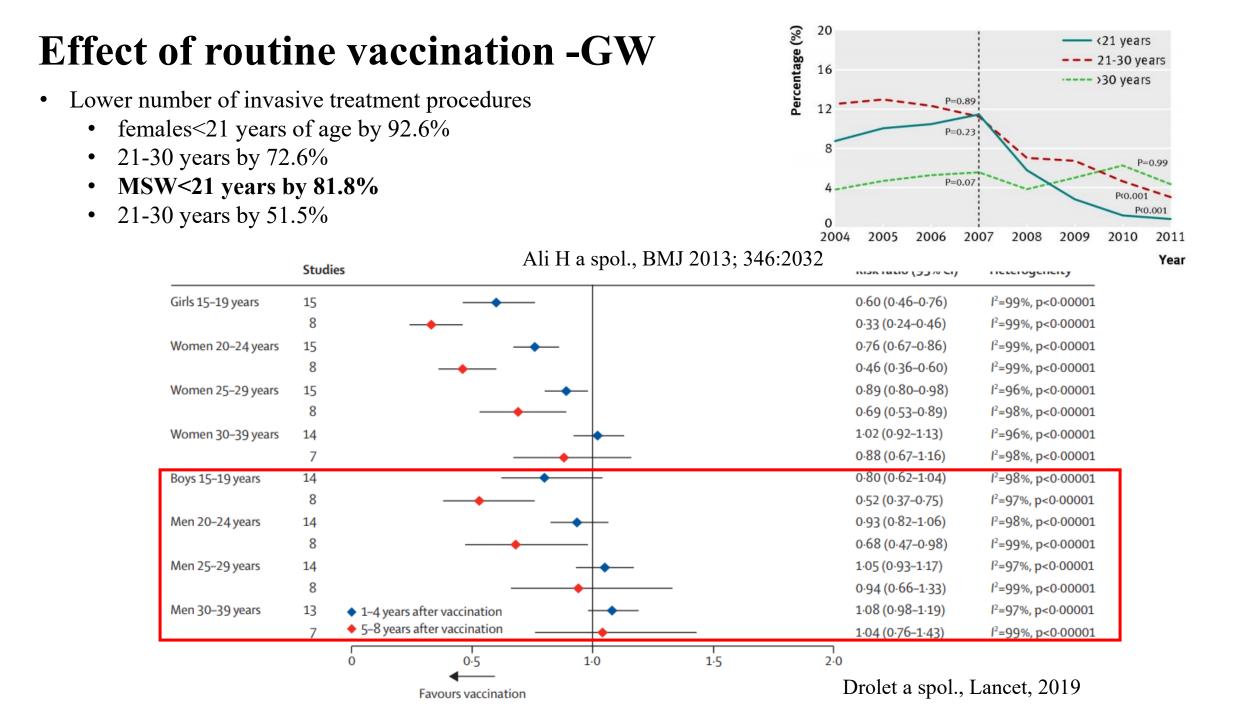









#### Ian Frazer, Jian Zhou

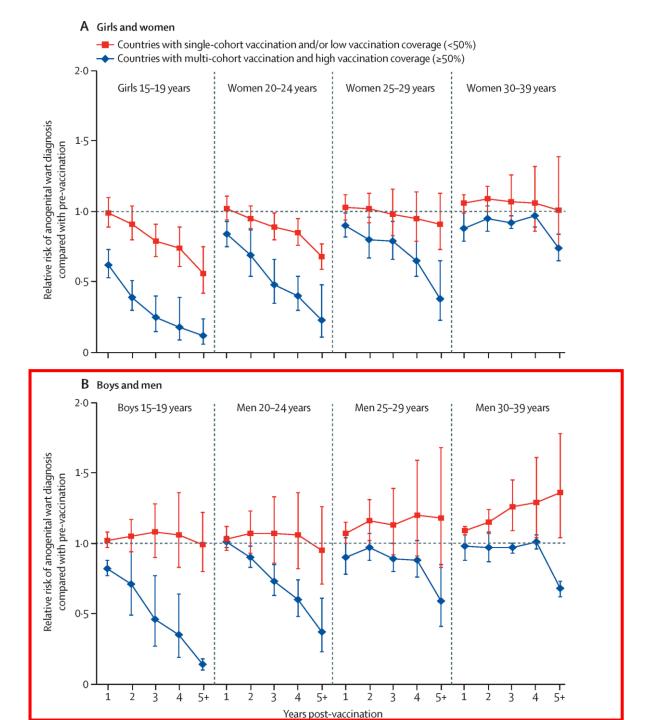

# **Effect of routine vaccination**

- Meta-analyses
- 60 mil subjects
- Up to 8 years follow-up
- 23 studies on HPV infection
- 29 studies on genital warts
- 13 studies on CIN2+

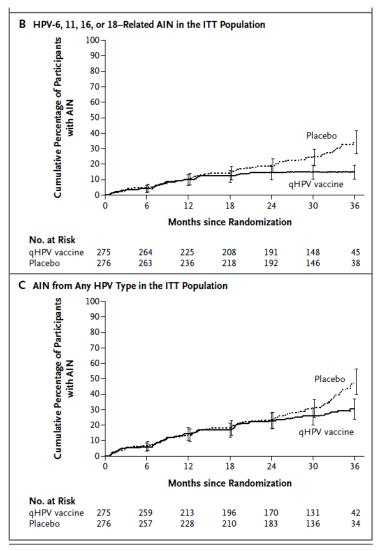
Drolet et al., Lancet, 2019

#### FU after vaccination






# The effect of the routine vaccination: genital warts, herd immunity

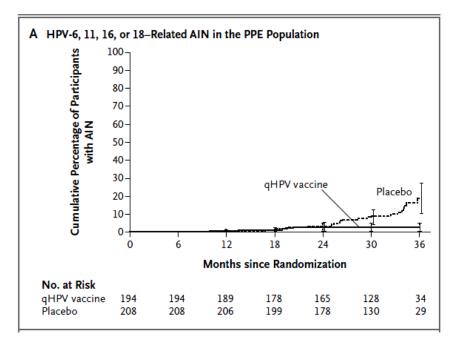

- In populations with >50% coverage of girls – herd effect
- The efficiency of vaccination in females on GW prevalence depends on the age group ~ **coverage**

states with coverage <50%, single cohort, females only

states with coverage >50%, multicohort, females only



# The effect of HPV vaccination against AIN in MSM

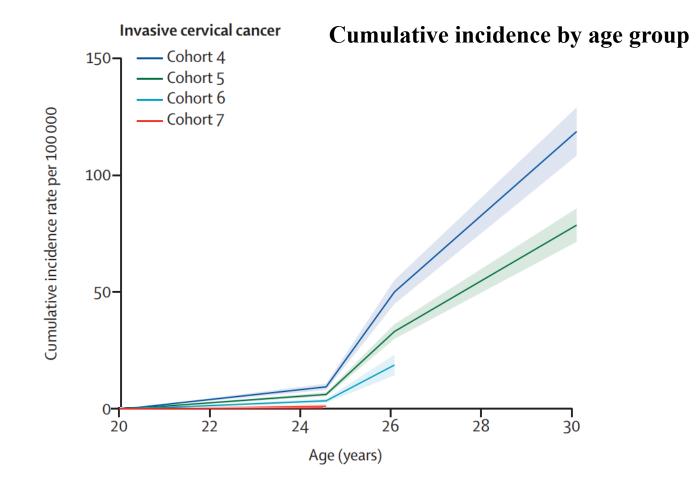



► Efectivity of HPV vacination against AIN in ITT males

- ➤ Associated with HPV vaccine types 50%
- ➤ Associated with any HPV type 26%

Efectivity of HPV vaccination against AIN in PPT males

- ➤ Associated with HPV vaccine types 78%
- ➤ Associated with any HPV type 55%




AIN1 91-93%; AIN2/3 90; anal cancer 92% efficacy of vaccines

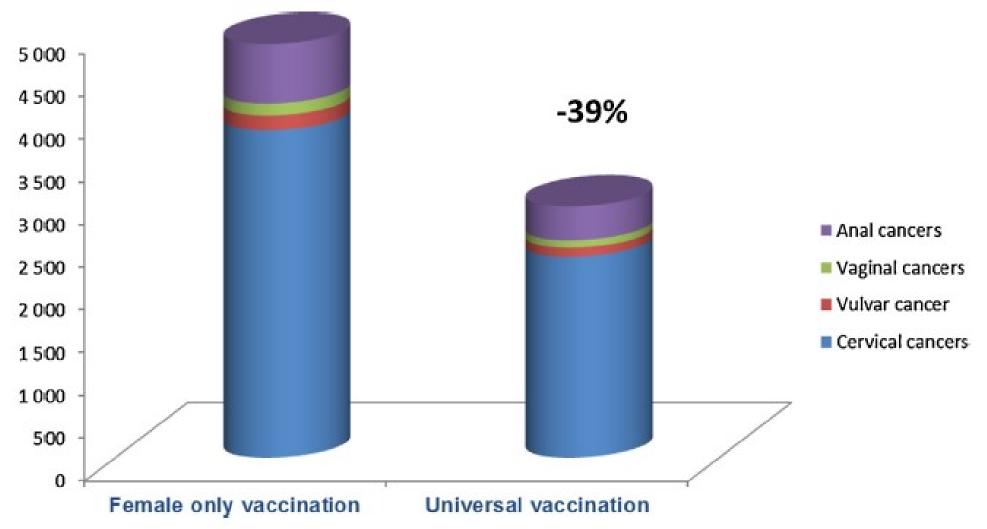
Palevsky a spol., NEJM, 2011 Rosado et al., Vaccines, 2023

# The efect of routine vaccination: cervical cancer

- UK, routine vaccination in 2008, girls 12-13 years and 14-18 years of age; till 2010
- till 2010 bivalent, from 2012 tetravalent vaccine
- Women born from 1995 (26 years in 2021) on ELIMINATION of CC



Falcaro et al., 2021


| Group | Age of vaccination | Coverage | Reduction<br>incidence |
|-------|--------------------|----------|------------------------|
| C4    | non-vaccinated     | 0        | 0                      |
| C5    | 16-18 yrs          | 44.8%    | 34%                    |
| C6    | 14-16 yrs          | 73.2%    | 62%                    |
| C7    | 12-13 yrs          | 84.9%    | 87%                    |

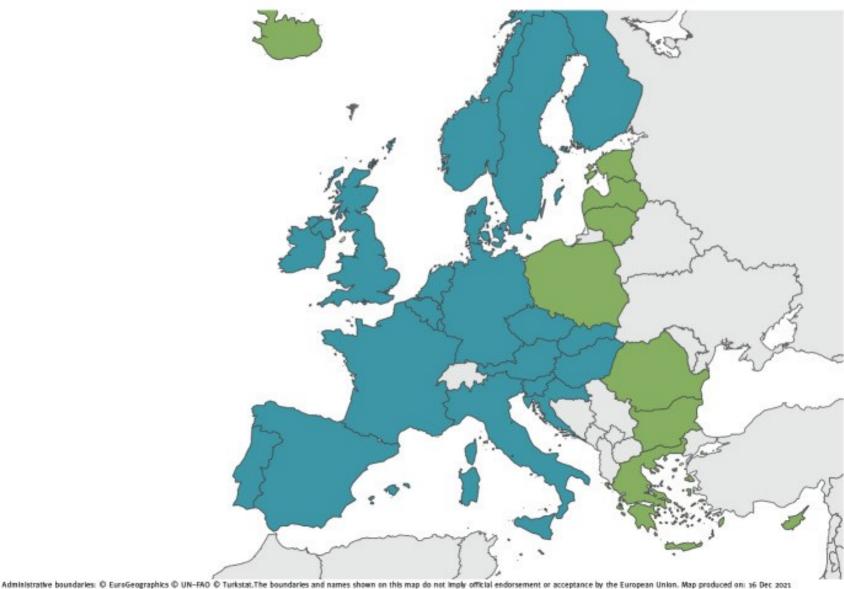
# The effect of the routine vaccination: HPV-associated and non-associated carcinomas

- Finland
- The decrease in the incidence of HPV-associated cancers
- The effect for all HPV-associated cancers was statistically significant

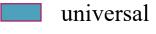
|                                     | HPV vaccinated women |   | Non-HPV vaccinated women |              |    |                |
|-------------------------------------|----------------------|---|--------------------------|--------------|----|----------------|
| Malignancy                          | Person years         | n | Rate (95% CI)            | Person years | n  | Rate (95% CI)  |
| Cervix cancer                       | 65,656               | 0 | -                        | 124,245      | 8  | 6.4 (3.2, 13)  |
| Vulva cancer                        | 65,656               | 0 | -                        | 124,245      | 1  | 0.8 (0.1, 5.7) |
| Oropharyngeal cancer                | 65,656               | 0 | -                        | 124,245      | 1  | 0.8 (0.1, 5.7) |
| Other HPV cancers <sup>1</sup>      | 65,656               | 0 | _                        | 124,245      | 0  | _              |
| All HPV associated invasive cancers | 65,656               | 0 | -                        | 124,245      | 10 | 8.0 (4.3, 15)  |
| Breast cancer                       | 65,656               | 2 | 3.0 (0.8, 12)            | 124,245      | 10 | 8.0 (4.3, 15)  |
| Thyroid cancer                      | 65,656               | 1 | 1.5 (0.2, 11)            | 124,245      | 9  | 7.2 (3.8, 14)  |
| Melanoma                            | 65,656               | 3 | 4.6 (1.5, 14)            | 124,245      | 13 | 10.5 (6.1, 18) |
| Non-melanoma skin cancer            | 65,656               | 2 | 3.0 (0.8, 12)            | 124,245      | 3  | 2.4 (0.8, 7.5) |

# **Reduction of HPV-associated disease by vaccination**




Audisio et al., 2016

# **Eradication of HPV**


Model-Based Reproduction Numbers, Immunity Thresholds for Eradication of Vaccine-Covered Oncogenic Human Papillomaviruses (HPVs), Table 3. and Corresponding Critical Coverage of Vaccination by Vaccine Efficacy for Gender-Neutral (Girls and Boys) and Girls-Only (Girls) Vaccination Strategies

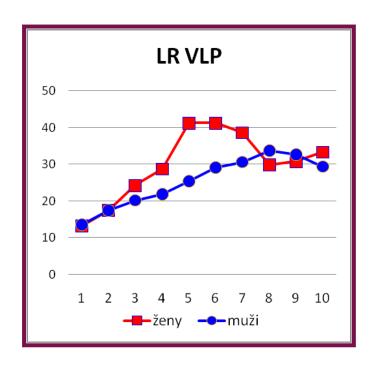
|          |                |                     |                |       | Critical Coverage of Vaccination |        |                |                 |                 |                 |
|----------|----------------|---------------------|----------------|-------|----------------------------------|--------|----------------|-----------------|-----------------|-----------------|
|          | Reproduction N | lumber <sup>a</sup> | Immunity Thre  | shold | VE 95%                           | VE 95% |                |                 | VE 50%          |                 |
| HPV Type | Girls and Boys | Girls               | Girls and Boys | Girls | Girls and Boys                   | Girls  | Girls and Boys | Girls           | Girls and Boys  | Girls           |
| HPV16    | 3.3            | 10                  | 70%            | 90%   | 74%                              | 95%    | 88%            | NE <sup>b</sup> | NE <sup>b</sup> | NE <sup>b</sup> |
| HPV18    | 2.2            | 4.5                 | 55%            | 78%   | 58%                              | 82%    | 69%            | 98%             | NE <sup>b</sup> | $NE^b$          |
| HPV31/33 | 1.7            | 2.9                 | 40%            | 65%   | 42%                              | 68%    | 50%            | 81%             | 80%             | $NE^b$          |
| HPV45    | 1.7            | 2.9                 | 40%            | 65%   | 42%                              | 68%    | 50%            | 81%             | 80%             | $NE^b$          |
| HPV35    | 1.3            | 1.5                 | 20%            | 35%   | 21%                              | 37%    | 25%            | 44%             | 40%             | 70%             |

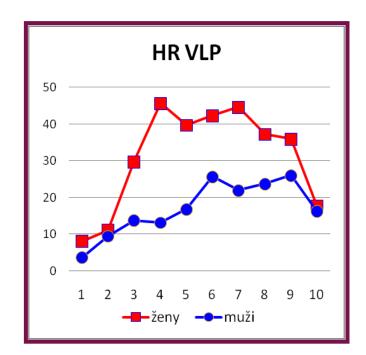
# Vaccination in Europe: gender and reimbursement



Vaccination policy

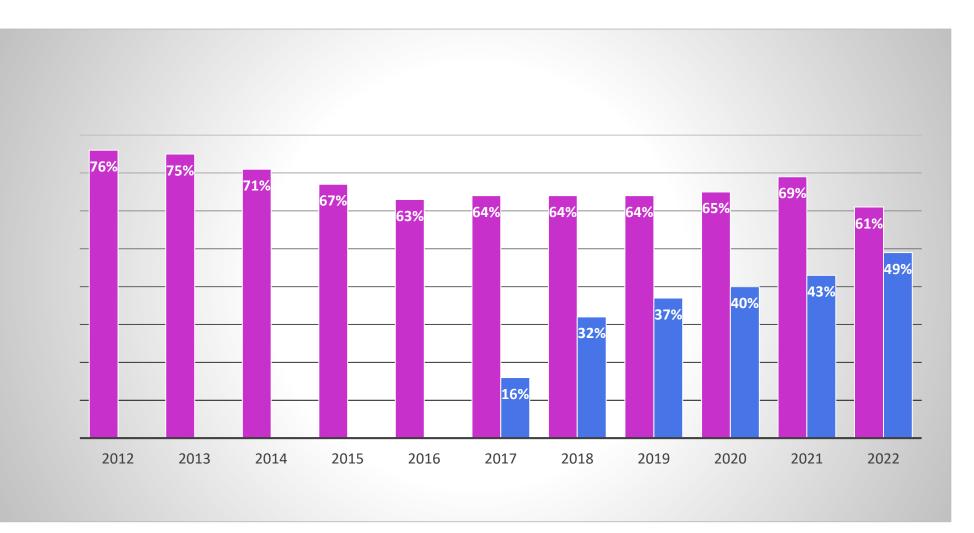



girls only


Colzani et al., Eurosurveillance, 2021

# Prevalence of HPV-specific antibodies in the Czechia

- Serum of the healthy individuals (N=3 150)
- Age category 6-10 years LR HPV antibodies prevalence 10 %
- Age category 11 -14 years HR HPV antibodies prevalence10 %
- Age category 15 -20 years HR HPV antibodies prevalence 30 %
- Age category 6-9 years LR HPV6 11.3%; LR HPV11 10.6%


| А  | ge group (years)) | #<br>femal | # male |
|----|-------------------|------------|--------|
|    |                   | е          |        |
| 1  | 6–10              | 99         | 111    |
| 2  | 11-14             | 126        | 138    |
| 3  | 15-20             | 289        | 233    |
| 4  | 21-25             | 289        | 183    |
| 5  | 26-30             | 136        | 346    |
| 6  | 31-35             | 97         | 250    |
| 7  | 36-40             | 101        | 137    |
| 8  | 41-50             | 188        | 299    |
| 5  | 51-60             | 195        | 392    |
| 10 | >60               | 51         | 68     |





Hamšíková et al., STI, 2012

# Coverage of 13 years old girls and boys in Czechia



data ÚZIS ČR,

# Summary

- The prevalence of HPVs in males is very high and age-independent
- The incidence of HPVs decreases with age but sustains high to higher age
- The clearance of HPVs is not influenced by age
- The incidences of HPV-associated cancers of males are increasing
- The HPV vaccines are registered from 9 years of age also for males
- Gender-neutral vaccination is important to cover all groups e.g. MSM
- Gender-neutral vaccination is necessary to lower the incidence of HPV-associated carcinomas in males
- Elimination/eradication of certain HPV types will not be possible without genderneutral vaccination

# Thank you for your attention



The work was supported by the project National Institute of Virology and Bacteriology (Programme EXCELES, ID Project No. LX22NPO5103) – Funded by the European Union – NextGenerationEU, and by the Ministry of Health of the Czech Republic - DRO (Thomayer University Hospital - TUH, 00064190).



Funded by the European Union NextGenerationEU





www.nivb.cz