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Abbreviations used in the Thesis 

ACMG American College of Medical Genetics and Genomics 

AIM ancestry informative marker 

ALT alternative allele 

ARL3 ADP ribosylation factor like GTPase 3 

AUC area under the curve 

BC breast cancer 

BCAC Breast Cancer Association Consortium 

BRCA1 BRCA1 DNA repair associated 

BRCA2 BRCA2 DNA repair associated 

BRRM bilateral risk-reducing mastectomy 

BRRSO bilateral risk-reducing salpingo-oophorectomy 

CDPC Centre for Disease Prevention and Control 

CHEK2 checkpoint kinase 2 

CI confidence interval 

CIMBA Consortium of Investigators of Modifiers of BRCA1/2 

DNA deoxyribonucleic acid 

DNAAF9 dynein axonemal assembly factor 9 

DR2 dosage R-squared 

eQTL expression quantitative trait loci 

FAM107B family with sequence similarity 107 member B 

FDR false discovery rate 

FUMA functional mapping and annotation 

GRCh37 genome reference consortium human build 37 

GTEx genotype-tissue expression project 

GWAS genome-wide association study 

HBOC hereditary breast and ovarian cancer 
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HR hazard ratio 

HWE Hardy-Weinberg equilibrium 

IBD identity by descent 

LD linkage disequilibrium 

LGDB genome database of Latvian population 

lncRNA long non-coding RNA 

LoF loss-of-function 

MAF minor allele frequency 

NES normalised effect size 

OC ovarian cancer 

OCAC Ovarian Cancer Association Consortium 

OR odds ratio 

PC principal component 

PCR polymerase chain reaction 

PRS polygenic risk score 

PV pathogenic variant 

QC quality control 

REF reference allele 

ROC receiver-operating characteristic 

SD standard deviation 

SE standard error 

SLC1A5 solute carrier family 1 member 5 

SNV single nucleotide variant 

TNBC triple-negative breast cancer 

VEP variant effect predictor 

WES whole exome sequencing 

WGS whole genome sequencing 

ZNF514 zinc finger protein 514 
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Introduction 

According to GLOBOCAN 2020, breast cancer (BC) is the most 

frequently diagnosed cancer in females, contributing to 15 % of cancer‑related 

deaths worldwide, with approximately 522,000 reported deaths. Additionally, 

ovarian cancer (OC) ranks eighth in terms of incidence and mortality among 

females, contributing to 5 % of cancer-related deaths (Sung et al., 2021). In Latvia, 

BC and OC creates a significant healthcare burden, accounting for approximately 

1200 new BC diagnoses and 300 OC diagnosis annually (CDPC, 2020). 

Approximately 5–10 % of all BC cases and 10–15 % of all OC cases are 

estimated to be hereditary, being associated with germline pathogenic variants 

(PVs) in a cancer predisposition gene, particularly BRCA1 and BRCA2 (Angeli 

et al., 2020; Leitsalu et al., 2021). Germline PVs in BRCA1 gene are recognised 

as the most penetrant genetic predisposition for both BC and OC. The associated 

lifetime risks for cancer development have been estimated to range from 60 % to 

75 % for BC and 34 % to 44 % for OC by the age of 80 in female carriers of 

germline BRCA1 PVs (Barnes et al., 2020; Borde et al., 2022; Rebbeck et al., 

2015). These data suggest an incomplete penetrance, where a subset of BRCA1 

PV carriers never develops BC or OC in their lifetime, presenting challenges in 

genetic counselling and risk assessment due to variability in penetrance among 

carriers. Penetrance refers to the likelihood of an individual carrying specific 

genetic PVs to develop particular trait or disease, in this case BC or OC. 

Subsequently, other genetic factors are suggested to contribute to this 

phenomenon (Chen et al., 2020; Downs et al., 2019; Narod, 2002).  

Currently, the assessment of individuals’ risk of developing BC or OC is 

based on personal history or the presence of first-degree relatives with specific 

cancer diagnosis, along with an age-related criteria, followed by screening to 

identify germline BRCA1 PVs with founder effect (Jürgens et al., 2022). 

However, given the incomplete penetrance of BRCA1 PVs, the assessment 
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should also include other penetrance-modifying factors. As the preventive 

procedures are invasive and can have severe psychological and physiological 

effects, precise age-dependent estimations of cancer risk in BRCA1 PV carriers 

are critical in genetic counselling. Enhanced risk prediction can help to identify 

high-risk women who may benefit from early clinical intervention and low-risk 

women who may decide to postpone prophylactic procedures or 

chemoprevention (Borde et al., 2022; Kuchenbaecker, McGuffog, et al., 2017). 

Therefore, the aim of this Thesis was to contribute to research on potential 

genetic modifiers of BC or OC risk in BRCA1 PV carriers, particularly focusing 

on the region-specific BRCA1 PVs in the Latvian population (c.4035del and 

c.5266dup). This was achieved through hypothesis-driven targeted candidate 

gene approach focusing on BRCA1 and CHEK2 double heterozygotes, followed 

by a data-driven genome-wide association study (GWAS) approach. 

Additionally, we explored and compared the efficiency of two recently 

developed genome-wise polygenic risk score (PRS) models (BayesW vs. 

BayesRR-RC) to estimate the overall genetic risk in women carrying these two 

most frequently identified germline BRCA1 PVs. The goal of this Thesis was to 

evaluate the risk of developing BC or OC due to additional genetic variations. 

Aim of the Thesis 
To identify genetic factors that might influence the penetrance of two 

most prevalent BRCA1 pathogenic variants (c.4035del and c.5266dup) within 

the study cohort. 
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Objectives of the Thesis 
To achieve the overall aim of the Thesis, the following objectives have 

been set: 

1 Assess the effect of three pathogenic/likely pathogenic variants of 

the CHEK2 gene on the penetrance of BRCA1 pathogenic variants 

(c.4035del and c.5266dup) in the study cohort; 

2 Conduct a GWAS in breast cancer patients to identify additional 

genetic variants affecting the penetrance of BRCA1 pathogenic 

variants (c.4035del and c.5266dup) in the study cohort; 

3 Conduct a GWAS in ovarian cancer patients to identify additional 

genetic variants affecting the penetrance of BRCA1 pathogenic 

variants (c.4035del and c.5266dup) in the study cohort; 

4 Evaluate the association between novel genome-wise PRSs and 

the risk of breast and ovarian cancer in BRCA1 pathogenic variant 

(c.4035del and c.5266dup) carriers within the study cohort. 

Hypothesis of the Thesis 
The penetrance of region-specific BRCA1 pathogenic variants (c.4035del 

and c.5266dup) in the study cohort is affected by other genetic variants. 

Novelty of the Thesis 
Until now, there has been a lack of research into the genetic factors 

contributing to the incomplete penetrance of specific BRCA1 PVs. This study 

represents the first comprehensive investigation of genetic modifiers of        

region-specific BRCA1 PVs conducted on a cohort of the Latvian population. 

This cohort was specifically selected based on two founder variants in BRCA1 

gene (c.4035del and c.5266dup), resulting in genetically homogeneous cohort. 
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As the author is not a native English speaker Large Language Models 
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1 Materials and methods 

1.1 Study cohort 
The study cohort consisted of 452 women who were selected based on 

two germline BRCA1 PVs - NM_007294.4:c.4035del (rs80357711, previously 

referred to as c.4154delA) and NM_007294.4:c.5266dup (rs80357906, 

previously referred to as c.5382insC). Study participants were clinical cohort 

recruited continuously between 2002 and 2022, who were ≥ 18 years old and 

underwent germline genetic testing for hereditary breast and ovarian cancer 

(HBOC) syndrome at the Breast Surgery Unit of the Pauls Stradiņš Clinical 

University Hospital. Participants were diagnosed as affected with primary BC 

(n = 196), primary OC (n = 129) vs. unaffected (n = 127). The age of participants 

was censored at recruitment, and the follow-up data was not available. At 

the time of recruitment, none of the participants had undergone bilateral           

risk-reducing mastectomy (BRRM) or bilateral risk-reducing                       

salpingo-oophorectomy (BRRSO). DNA was isolated from peripheral blood by 

the FlexiGene DNA Kit (Qiagen, Germany) in accordance with 

the manufacturer’s protocol. 

Both tested variants are frameshift variants that result in a premature stop 

codon, leading to truncated (c.5266dup) or reduced (c.4035del) BRCA1 protein. 

Both variants are classified as pathogenic based on the American College of 

Medical Genetics and Genomics (ACMG) criteria (Richards et al., 2015), and 

their biological effect is loss-of-function (LoF) of the protein. 

Experimental setup and data analysis workflow are presented in 

the Figure 1.1. 

This research received ethical approval from the Central Medical Ethics 

Committee of Latvia under protocol No 2/18-09-19, with supplement  

No 01-29.1.2/282. Additionally, approval was granted by the Genome Research 

Council under protocol No A-1/18-10-19. The use of Estonian reference data 
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was authorised through approval No 1.1-12/624, along with amendment  

No 1.1-12/1478 by the Estonian Committee on Bioethics and Human Research 

(Estonian Ministry of Social Affairs). 

 
Figure 1.1 Diagram of analysis workflow presented in this Doctoral Thesis 

 

Each participant who enrolled in this study gave a written informed 

consent for the use of their clinical and genomic information for research 

purposes. 

1.2 Analysis of BRCA1 and CHEK2 double heterozygotes 
At the study initiation in 2019, a hypothesis-driven analysis of BRCA1 

and CHEK2 double heterozygotes was performed in 380 participants who were 

enrolled up to study onset (see Figure 1.1). The pathogenic/likely pathogenic and 

risk variants (Pavlovica et al., 2022) of CHEK2 gene (splice site variant 

NM_007194.4:c.444+1G>A, p.(?), rs121908698 and missense variant 

NM_007194.4:c.470T>C, p.(Ile157Thr), rs17879961) were identified by 
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Sanger’s sequencing using BigDye® Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems, USA) along with primers as previously described 

(Cybulski et al., 2004). The sequencing results were analysed using the 3500 

Genetic Analyzer (Applied Biosystems, USA). Data processing and editing was 

carried out using Sequencing Analysis Software and SeqScape™ Software 

(Applied Biosystems, USA) with reference to the Genome Reference 

Consortium Human Build 37 (GRCh37)/hg19 (released in 2009). Despite 

the availability of the more recent GRCh38 reference genome, we 

used  GRCh37/hg19 not only for compatibility with earlier studies but also 

to  ensure  analysis tool compatibility and minimise potential errors 

associated  with  transitioning between genome builds. To detect                                                                         

the PV NM_007194.4:c.(908+1_909–1)_(1095+1_1096–1)del in CHEK2 

gene,  which results in the deletion of exon 9-10 (also referred to as del5395), we 

used a multiplex polymerase chain reaction (PCR) approach (Veriti, Applied 

Biosystems, USA) as described elsewhere (Cybulski et al., 2007; Plonis et al., 

2015). The products of the PCR reaction were separated using 2 % agarose gel. 

Confirmation of the deletion in multiplex PCR-positive samples was achieved 

through subsequent Sanger’s sequencing. Detailed information about this 

methodology has been previously described (Cybulski et al., 2006). 

1.3 Genotyping with OncoArray-500K BeadChip 
At the Institute of Oncology and Molecular Genetics, Rīga Stradiņš 

University, all 452 study samples were genotyped using the Infinium 

OncoArray-500K BeadChip (Illumina, San Diego, CA, USA) between 2019 and 

2022. With a genome-wide backbone of 250,000 tag single nucleotide variants 

(SNVs) of common variants, the array has approximately 500,000 SNVs. The 

remaining markers are genetic variants linked to BC, OC, and other cancers that 

have been discovered through previous GWAS and other methods (Guo et al., 

2015; Michailidou et al., 2015; Michailidou et al., 2013). The array has been 
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developed in collaboration with leading experts from OncoArray consortium, 

including Breast Cancer Association Consortium (BCAC), Consortium of 

Investigators of Modifiers of BRCA1/2 (CIMBA), and Ovarian Cancer 

Association Consortium (OCAC). 

1.4 Genotype calling and quality control (QC) 
A modified genotype quality control (QC) process was followed for our 

dataset which have been described in detail elsewhere (Guo et al., 2014). In 

essence, this involved a sample based and variant based QC steps primarily using 

GenomeStudio software (Illumina, Genotyping module v2.0.5) and        

command-line program PLINK v1.07 and v1.9 (Purcell et al., 2007). 

First, sample genotype calling was done using GenomeStudio software, 

which performed automatic clustering. Individuals with a call-rate below 98 % 

or mismatched sex data were manually excluded, and variant calls with 

a GenTrain score below 0.7 were inspected and re-clustered before final export 

to PLINK format. 

Next, variant positions were updated to the human reference genome 

assembly GRCh37/hg19 and all variants were changed from the TOP strand to 

hg19 plus strand using GSAMD-24v1-0_20011747_A1-b37.strand.RefAlt.zip 

files that can be found at the https://www.well.ox.ac.uk/~wrayner/strand/ 

webpage. 

To ensure data quality, several QC steps were conducted: gender 

mismatch was checked using inbreeding estimates for the X chromosome using 

PLINK command --check-sex, retaining females with an inbreeding estimate 

< 0.2. Race mismatch was assessed through principal component (PC) analysis 

using EIGENSOFT software (Price et al., 2006) and 687 ancestry informative 

markers (AIMs), with a threshold of > mean ± 6 standard deviation (SD) for race 

mismatch. Relatedness and duplicates were identified by pair-wise identity by 

descent (IBD) calculations after linkage disequilibrium (LD) pruning to enhance 

https://www.well.ox.ac.uk/%7Ewrayner/strand/
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marker independence, excluding probable duplicates with PI_HAT value close 

to 1. Hardy-Weinberg equilibrium (HWE) outliers were identified using a p value 

threshold of < 1 × 10−7 for unaffected individuals and < 1 × 10−12 for cases, 

excluding 503 SNVs. Samples with extreme heterozygosity (± 4.89 SD from 

the mean) and inbreeding coefficient > 0.1 were also excluded, leaving 406 

samples for analysis. 

1.5 Genotype imputation 
For the imputation, additional SNVs with minor allele frequency (MAF) 

< 0.01 were excluded. Missing genotypes were imputed using the Estonian 

population based high coverage whole genome sequencing (WGS) dataset 

(n = 2,244) as the reference panel, as described previously (Mitt et al., 2017).  

A two-stage imputation approach was implemented: phasing with EAGLE 

(Loh et al., 2016) and imputation with BEAGLE (Browning et al., 2018). 

Estimated genotypes were generated for approximately 38 million SNVs.       

Post-imputation QC was done, excluding SNVs with MAF < 0.01 and dosage    

R-squared (DR2) < 0.8. Filtered dataset contained 7,911,505 good quality SNVs 

for subsequent analysis. 

1.6 Genome-wide association study (GWAS) using SAIGE 
A total of 406 individuals were available for association analysis after 

dataset cleaning and imputation. Association analysis was carried out using 

software program R v4.0.2 (R. C. Team, 2020) package SAIGE v0.38 (Chen 

et al., 2016) to implement a mixed logistic regression model. The model was 

adjusted for relatedness, the first 4 PCs, age at recruitment/disease onset, and 

type of BRCA1 PV. In this study, relatedness is adjusted to minimise the risk of 

false positive associations and ensure that the genetic variants tested are 

genuinely associated with the outcomes (e.g. BC and OC) rather than being 

confounded by familial relationships. The implementation of a mixed logistic 
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regression model, along with adjustment for relatedness and other covariates, 

helps to control potential sources of bias by providing more reliable results. For 

association analysis a stringent significance threshold of p < 5 × 10−8 was used 

that in following post-GWAS analysis was reduced to genome-wide suggestive 

significance threshold of p < 1 × 10−6. 

1.7 Post-GWAS analysis using free access                           
platform FUMA and VEP 
The Functional Mapping and Annotation (FUMA) platform was used to 

annotate, prioritise, visualise, and interpret GWAS results. To identify 

independent significant SNVs, the SNVs with p values less than or equal to 

1 × 10−6 and an r2 < 0.6 were selected from GWAS results. Furthermore, to define 

lead SNVs from independent significant SNVs, the pairwise SNV threshold of 

r2 < 0.1 was used. Next, the genomic risk loci in which SNVs were in LD with 

an r2 coefficient exceeding 0.6 with the independent significant SNVs were 

detected. The maximum distance of 250 kb between LD blocks to consolidate 

them into a single genomic locus was used. To conduct the LD analysis, 

the genetic data from 1000 Genome Project phase 3 was applied as a reference data. 

Additionally, the Ensembl Variant Effect Prediction (VEP) tool was used 

(https://www.ensembl.org/info/docs/tools/vep/index.html) to assess the effect of 

GWAS-identified top variants on genes, transcripts, and regulatory regions. 

SNP2GENE function was used to compute LD structure, characterise 

the risk loci, annotate functions to SNVs, and prioritise candidate genes. For 

positional mapping, genes within each genomic risk locus were determined based 

on SNVs that were physically located within a 10 kb distance from the gene. 

Additionally, expression quantitative trait loci (eQTL) mapping was 

conducted to explore the associations between GWAS-identified SNVs and 

changes in gene expression levels. This analysis helps to understand the 

functional consequences of identified genetic variants and to provide insights 

https://www.ensembl.org/info/docs/tools/vep/index.html
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into the possible biological mechanisms underlying the observed genetic 

associations. eQTL data from 2 tissue types, including Genotype-Tissue 

Expression (GTEx) project v8 Breast, and GTEx v8 Ovary data sources were 

used for eQTL mapping. Only eQTL values with a false discovery rate (FDR) 

less than 0.05 were considered significant and used to map SNVs to genes. 

1.8 Polygenic risk score (PRS) calculations 
The PRS estimates employed in this study incorporated information from 

2,174,072 SNVs that are present in both the UK Biobank 

(https://www.ukbiobank.ac.uk/ (Bycroft et al., 2018)) and Estonian Biobank 

individuals (https://genomics.ut.ee/en/content/estonian-biobank (Mitt et al., 

2017)). These PRSs were developed using data from 428,747 UK Biobank 

individuals and 105,000 Estonian Genome Centre participants (Orliac et al., 

2022). For the calculations conducted in this study, 2,041,044 SNVs were used 

due to the missingness of the remaining 133,028 variants in our dataset. 

The PLINK v2.00 function --score was used for all PRS calculations. 

1.9 Statistical analysis 
For the statistical analysis, R v4.0.2 (R Core Team, Vienna, Austria)  

(R. C. Team, 2020) and RStudio v1.3.1093 (RStudio Team, Boston, MA, USA) 

(R. Team, 2020) software programs were used. All statistical tests conducted 

were two-sided, and p values below 0.05 were considered statistically significant. 

A variety of statistical techniques and R packages were employed to 

address specific study objectives. For instance, the Kruskal-Wallis test (base R 

‘stats’ package) was used to assess differences in age distribution among 

the study groups, followed by post-hoc pairwise comparisons with the Wilcoxon 

rank-sum test with Bonferroni correction. The prevalence of BRCA1 and CHEK2 

double heterozygous variants and their association with BC and/or OC were 

evaluated using a two-tailed Fisher's exact test to determine odds ratios (ORs) 

https://www.ukbiobank.ac.uk/
https://genomics.ut.ee/en/content/estonian-biobank
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and their statistical significance. Additionally, the Bioconductor package 

'Survival', version 3.2-3 (Therneau, 2020), was used to investigate the impact of 

the PVs on the cumulative risk of BC and/or OC using Kaplan-Meier estimates, 

with curve differences assessed using the Log-rank test. For the prediction of 

cumulative hazard (time-to-event probability), Cox-regression analysis was 

performed. 

The association between PRS and the presence of BC and/or OC in 

BRCA1 PV carriers was evaluated by using a binomial logistic regression model. 

The outcome variable had three categories: 0 (no cancer), 1 (BC), and/or 2 (OC). 

The model was adjusted for age, age squared, BRCA1 PV (c.4035del or 

c.5266dup), and the first two PCs. OR and their 95 % confidence interval (CI) 

were calculated using the R package Epi (Carstensen, 2022). Receiver operating 

characteristic (ROC) curve analysis was performed to select the most optimal 

binomial logistic regression analysis model using the R package pROC (Robin 

et al., 2011). 

1.10 Data availability 
Summary statistics will be available from https://dataverse.rsu.lv/repository. 

https://dataverse.rsu.lv/
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2 Results 

2.1 Study cohort characteristics 

2.1.1 Patient characteristics 
Our study cohort comprised 452 women who were carriers of one of 

BRCA1 PVs – c.4035del or c.5266dup. These women had been diagnosed with 

either BC, OC, or had no cancer diagnosis at the time of recruitment. Among 

the study cohort, 196 women (43.4 %) were diagnosed with BC, 129 women 

(28.5 %) were diagnosed with OC, and 127 women (28.1 %) had no cancer 

diagnosis, serving as unaffected group for comparison. The mean ages at onset 

of BC or OC were 46.52 years (range 25–92, SD = 11.71) and 50.62 years (range 

27–79, SD = 8.80), respectively. The mean age of the unaffected group was 

38.36 years (range 18–73, SD = 11.05). Pairwise comparisons of patient age 

between different groups, conducted using the Wilcoxon rank sum test with 

continuity correction, revealed statistically significant p < 0.01 for all 3 groups, 

indicating substantial differences in age between each group. These age 

differences between BC and OC, and unaffected groups were adjusted and 

standardised when performing subsequent analyses. Key characteristics of 

the study cohort are summarised in Table 2.1. The specific patient characteristics 

outlined in the study are crucial for understanding the diversity within the cohort 

and for drawing meaningful conclusions related to the impact of BRCA1 PVs on 

cancer development. 

Following multi-step QC and comprehensive data cleaning, our dataset 

was reduced to 406 samples. The final study cohort used for subsequent GWAS 

and PRS analysis consisted of 171 women (42.1 %) with a BC diagnosis, 

121 women (29.8 %) with an OC diagnosis, and 114 women (28.1 %) with no 

cancer diagnosis. The mean ages at disease onset were 46.67 years (range  

25–92) for BC and 50.55 years (range 27–79) OC. 
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Table 2.1  

Study cohort characteristics 
 

Total BRCA1:c.4035del BRCA1:c.5266dup 
Study sample 452 173 (38.28%) 279 (61.72%) 
Breast cancer 196 (43.36%) 53 (11.73%) 143 (31.64%) 
Ovarian cancer 129 (28.54%) 69 (15.27%) 60 (13.27%) 
Unaffected 127 (28.10%) 51 (11.28%) 76 (16.81%) 
Mean age 45.40±11.72 47.67±12.02 43.99±11.35 
Breast cancer* 46.52±11.71 49.68±12.56 45.34±11.19 
Ovarian cancer* 50.62±8.80 52.00±9.57 49.03±7.58 
Unaffected* 38.36±11.05 39.73±10.64 37.45±11.30 

* Represents statistically significant (of p < 0.01) age difference between all 3 study groups. 
 

2.1.2 The penetrance of BRCA1 PVs c.4035del and c.5266dup 
in the study cohort 

The study cohort was divided into two subgroups based on the specific founder 

alleles of the BRCA1 gene – c.4035del and c.5266dup. The overall study 

population consisted of 173 women carrying the c.4035del PV (53 in the BC 

group, 69 in the OC group, and 51 in the unaffected group) and 279 women 

carrying the c.5266dup PV (143 in the BC group, 60 in the OC group and, 76 in 

the unaffected group), as shown in Table 2.1. 

Penetrance, defined as the proportion of individuals carrying specific 

disease-associated PV who develop the corresponding disease phenotype 

(Cooper et al., 2013) of either BC or OC, was calculated in this study cohort. 

The results are presented in Table 2.2. Among the carriers of BRCA1 c.4035del 

and c.5266dup PVs, the estimated penetrance in the study cohort was 31 % for 

BC and 40 % for OC, and 51 % for BC and 22 % for OC, respectively. 
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Table 2.2 

Penetrance of BRCA1 PVs c.4035del and c.5266dup in the study cohort 

BRCA1 PV Breast cancer (%) Ovarian cancer (%) 
c.4035del 30.64 39.88 
c.5266dup 51.25 21.51 

PV – pathogenic variant. 
 

2.1.3 Age related cumulative incidence of BC or OC among BRCA1 
c.4035del and c.5266dup PV carriers 
Next, we conducted a Cox proportional hazards regression analysis to 

investigate the relationship between the BRCA1 PV – c.4035del and c.5266dup – 

and the time to an event (cancer diagnosis) in our study cohort of  

452 individuals. Of these, 325 individuals had cancer diagnosis (196 BC cases 

and 129 OC cases). 

The analysis revealed a significant association between the BRCA1 PV 

c.5266dup and the age of cancer onset, with a regression coefficient of 0.3626 

(p = 0.00169**). The hazard ratio (HR) for the BRCA1:c.5266dup variant was 

estimated to be 1.437 (95 % CI: 1.15–1.80), indicating that individuals with this 

variant had a 43.70 % higher risk of cancer development at younger age 

compared to individuals with other c.4035del variant. 

The concordance index, a measure of the model's predictive accuracy, 

was 0.562 (standard error (SE) = 0.015), indicating moderate predictive ability. 

Additional statistical tests consistently confirmed the significance of 

this association. The likelihood ratio, Wald, and Log-rank tests all showed 

significant associations between c.5266dup variant and the cancer occurrence 

(p = 0.001, p = 0.002, and p = 0.002, respectively). These results suggest that the 

BRCA1 PV c.5266dup is a statistically significant predictor of earlier cancer onset. 

In the subsequent analysis, we explored the impact of 

the BRCA1:c.5266dup PV on BC and OC groups individually (see Figure 2.1).  
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A 

 

B 

 

Figure 2.1 Cumulative incidence of BC or OC in BRCA1 PV carriers 
Red line indicates BRCA1:c.4035del PV carriers; the blue line indicates 

BRCA1:c.5266dup PV carriers. A) Plot visualising the cumulative incidence of 
BC development in BRCA1 PV carriers; B) Plot visualising the cumulative incidence 

of OC development in BRCA1 PV carriers. 
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The Cox proportional hazards regression models were applied to each 

group separately, yielding the following results. For the BC group consisting of 

323 individuals, with 196 cancer events, the Cox regression analysis revealed 

a significant association between the BRCA1:c.5266dup PV and the age of 

cancer onset. 

The HR for the BRCA1:c.5266dup PV was 1.564 (95 % CI: 1.14–2.15), 

indicating a 56.40 % higher hazard of developing BC compared to individuals 

with another BRCA1 PV (c.4035del).The statistical tests further confirmed 

the significance of this association. The likelihood ratio test yielded a p value of 

0.005, the Wald and Log-rank tests resulted in a p value of 0.006, and 

the concordance index was 0.56. 

In the OC group, which included 256 individuals with 129 cancer 

events, the Cox regression analysis did not show a similar trend. The association 

between the BRCA1:c.5266dup PV and the age of cancer onset in this group was 

not statistically significant. The HR for the BRCA1:c.5266dup PV was 1.2198 

(95 % CI: 0.86-1.73), with a p = 0.265. 

The likelihood ratio test, Wald test, and Log-rank test all produced 

consistent p values around 0.3, indicating that the evidence is not strong enough 

to conclude that the presence of the c.5266dup PV has a significant impact on 

the age of OC onset in this particular study. These distinct results suggest that 

the BRCA1:c.5266dup PV plays a significant role in the age of cancer onset 

within the BC group, but its impact is less evident in the OC group. 

2.2 Study design: Hypothesis-driven vs. data-driven analysis 
This section provides an overview of the main design framework for 

the study and categorises it as either hypothesis-driven or data-driven. These two 

approaches differ significantly in how they define the study objectives and 

conduct the investigation. A hypothesis-driven study is characterised by 

the formulation of specific research hypotheses prior to data collection and 
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analysis. Conversely, a data-driven study is distinguished by its exploration of 

data without a presumptive hypothesis. 

Our study employed a hybrid methodology that combined          

hypothesis-driven and data-driven techniques. This combination allowed us to 

test specific hypothesis while also exploring unexpected patterns and 

associations within the dataset. 

2.2.1 Hypothesis-driven analysis of BRCA1 and CHEK2 
double heterozygotes 
Here, our primary focus was on a hypothesis-driven analysis, specifically 

investigating individuals with double heterozygosity for BRCA1 and CHEK2 

genes, as both genes are involved in the same DNA repair pathway. This analysis 

was conducted at the outset of the study, using data from 380 individuals. 

The studied CHEK2 variants were discovered in 13 double heterozygous 

cases (including c.444+1G>A, n = 1, c.470T>C, n = 11, del5395, n = 1), as listed 

in Table 2.3. 

Table 2.3 

Frequencies of CHEK2 variants in the study cohort 

Variant and case No of carriers/total Frequency (%) 
c.444+1G>A 

Unaffected 1/87 1.15 
BC cases 0/132 0.00 
OC cases 0/111 0.00 

c.470T>C 
Unaffected 2/87 2.30 
BC cases 3/132 2.27 
OC cases 6/111 5.41 

del5395 
Unaffected 0/87 0.00 
BC cases 1/129 0.78 
OC cases 0/109 0.00 

BC – breast cancer; OC – ovarian cancer. 
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None of the samples contained more than one simultaneous CHEK2 

variant. To estimate the penetrance of CHEK2 allelic variants in relation to BC 

or OC development risk among BRCA1 PV carriers, we compared the prevalence 

of these CHEK2 variants in the BC and OC groups to an unaffected group within 

the cohort. While the prevalence of CHEK2 variants was relatively high in 

the OC group (5.41 %), the increase in OC risk did not reach statistical 

significance (OR = 1.56; 95 % CI: 0.32–9.94; p = 0.73). Additionally, 

the prevalence of the studied CHEK2 variants in BC patients did not significantly 

differ from that in the unaffected group (OR = 0.88; 95 % CI: 0.15–6.15; p = 1). 

The impact of a specific CHEK2 variant on the age at cancer onset was 

not consistent. Among carriers of the BRCA1:c.4035del PV, the presence of any 

studied CHEK2 variant did not significantly alter the median age at the onset of 

any cancer (p > 0.3 by Log-rank test). In contrast, for carriers of 

the BRCA1:c.5266dup PV with any of the studied CHEK2 variants, the median 

age at onset of OC was notably lower, with an 8.5 year difference compared to 

BRCA1:c.5266dup PV carriers without the CHEK2 variant. The HR for this 

effect was 3.93 (95 % CI: 0.93–16.65). Although a Log-rank test indicated 

a statistically significant difference (p = 0.043) and a trend suggested 

an association between identified CHEK2 variants and a younger age at OC 

onset, alternative Cox regression modelling did not yield statistical significance 

(regression coefficient: 1.37, p = 0.064). 

2.2.2 Data-driven identification of single level variants associated 
with cancer risk in BRCA1 PV carriers 
This section transitions to a data-driven analysis, with a primary focus on 

the identification of genetic variants associated with the risk of BC and OC 

development in individuals carrying BRCA1 PVs without predefined hypotheses. 

The study employed a GWAS approach to identify such variants. 
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A total of 7,911,505 SNVs were tested for associations with BC or OC 

development risk in 406 BRCA1 PV carriers. Our analytical approach included 

the incorporation of covariates such as age at recruitment/disease onset, 

relatedness among participants, and the specific type of BRCA1 PV in 

the models. 

Results of the most significant top SNVs associated with BC or OC 

development risk are presented in the Manhattan plots in Figure 2.2 and later 

detailed in following chapter, within Table 2.4 of this manuscript. For        

genome-wide significance, we employed a stringent significance level of p < 5 × 

10−8, while p values ranging from 5 × 10−8 to ≤ 1 × 10−6 were considered 

suggestive of association. The most significant SNVs for a suggestive association 

with BC development risk was located on chromosomes 3 and 10, with the most 

significant association for an SNV located on chromosome 10 (see Figure 2.2A). 

However, in the OC group, chromosome 20 exhibited the most significant 

suggestive association, as shown in Figure 2.2B. 

To estimate potential biases in our dataset-specific analysis, we generated 

quantile-quantile (Q-Q) plots and estimated genomic factors for both BC and OC 

groups (not shown in this summary). The calculated inflation factors (λ) for BC 

and OC were 0.995 and 1.003, respectively. These values indicate that there was 

no substantial genomic inflation in our analysis. 

Using the FUMA platform in our post-GWAS analysis, we identified 

18 genomic risk loci associated with BC and 21 genomic risk loci associated with 

OC development risk. These loci contained 27 independent significant SNVs in 

the BC group and 25 independent significant SNVs in OC group that reached our 

predefined genome-wide suggestive significance threshold of p < 1 × 10−6 and 

were independent from each other at r2 < 0.6. Additionally, we identified 

1152 candidate SNVs in BC and 633 in OC that exhibited LD with previously 

mentioned independent significant SNVs. 
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Figure 2.2 SNV association with BC or OC development risk 
A) Manhattan plot visualising -log10p values for SNV associations with BC development risk. 
B) Manhattan plot visualising -log10p values for SNV associations with OC development risk. 

The red line denotes genome-wide significance (p = 5 × 10−8); the blue line denotes   
genome-wide suggestive significance (p = 1 × 10−6);                                                           

chromosome 23 represents chromosome X. 

 
Table 2.4 highlights three most significant (p < 1 × 10−7) genetic variants 

that were associated with the risk of developing BC or OC. 
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Table 2.4 

Top associated variants with BC or OC development risk 

Group rsID REF ALT MAF p 
value Beta SE Nearest 

gene 

BC rs2609813 A G 0.07952 2.33 × 
10−7 −1.26 0.24 FAM107B 

BC rs4688094 G C 0.4523 7.76 × 
10−7 −0.96 0.19 RP11-

384F7.1 

OC rs79732499 G T 0.01789 1.38 × 
10−7 −8.09 1.54 C20orf194 

BC – breast cancer; OC – ovarian cancer; rsID – reference SNV ID number; REF – 
reference allele; ALT – alternative allele; MAF – minor allele frequency; Beta – 
multivariate linear regression coefficient; SE – standard error. 

 

Annotation of candidate SNVs to the nearest gene in GWAS is a common 

practice. The decision to report the nearest gene is often practical, relying on 

the assumption that the proximity correlates with a higher likelihood of affecting 

gene's function. However, it's crucial to recognise that the nearest gene may not 

always be the functional gene influencing the observed association (Watanabe 

et al., 2017). 

Our identified lead variants present valuable candidates for future 

functional studies, providing a foundation for understanding the complex 

molecular mechanisms that contribute to the effect on BRCA1 PV penetrance. 

The strongest association with BC development risk was observed for 

rs2609813 variant (beta = -1.26; p = 2.33 × 10−7; risk allele G frequency = 0.08). 

Detailed information is available in Table 2.4. This lead variant rs2609813 is 

located on chromosome 10 and it is an intronic variant of the FAM107B (Family 

with Sequence Similarity 107 Member B) protein coding gene 

(ENSG00000065809). Notably, an additional 56 SNVs, exhibiting high LD with 

the lead variant, were mapped to this intronic region. Based on VEP tool, 

the variant is predicted to be an intronic variant, as well as the regulatory region 

variant in enhancer. 
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The second strongest association with BC development risk was 

identified for the rs4688094 variant (beta = -0.96; p = 7.76 × 10−7; risk allele C 

frequency = 0.45) as presented in Table 2.4. The rs4688094 variant is situated on 

chromosome 3 and is located within the novel long non-coding RNA (lncRNA) 

RP11-384F7.1 (ENSG00000243276), which exhibits high LD with 295 other SNVs. 

The only variant that reached genome-wide suggestive significance of 

p < 1 × 10−7 in the OC group was the lead variant rs79732499. This variant 

exhibited the lowest p value observed in this study (beta = −8.09; p = 1.39 × 10−7) 

with a risk allele T frequency of 0.018 (see Table 2.4). It is located on 

chromosome 20 within an intergenic region. The nearest mapped gene DNAAF9 

(Dynein Axonemal Assembly Factor 9, previously known as C20orf194) is 

a protein coding gene (ENSG00000088854). The lead variant rs79732499 is in 

LD with four SNVs mapped within this gene. Based on VEP tool, the variant is 

predicted to be an intergenic variant that is located between genes within 

a regulatory region (enhancer). 

Next, we performed eQTL mapping, focusing on the influence of genetic 

variants on gene expression using publicly available GTEx breast and ovary 

tissue data. The GTEx dataset comprised 563 genotyped samples, of which tissue 

samples from normal breast (n = 396), and ovary (n = 167) were used. 

The mapping was done to highlight potentially functional variants in our dataset, 

predict target genes and prioritise future experimental validations. Among all 

candidate SNVs, no significant SNV-gene pairs of cis-eQTL values were found 

in ovarian tissue by applying a FDR threshold of less than 0.05. However, we 

observed two significant eQTL values in the BC group (see Table 2.5). 

The most significant association was identified for the top lead SNV 

rs10178186 with a raw p value of 3.83 × 10−7 and a risk allele T frequency of 

0.10 (Table 2.5). This variant was mapped to the protein coding gene ZNF514 

(Zinc Finger Protein 514) (ENSG00000144026) on chromosome 2, along with 
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99 other variants exhibiting high LD with this lead variant. The normalised effect 

size (NES) of −0.36 indicates a negative association between the rs10178186 

variant and ZNF514 gene expression. 
Table 2.5 

The eQTL results in breast tissue 

rsID REF ALT MAF p value FDR NES Nearest 
gene 

rs10178186 C T 0.10 3.83 × 10−7 1.55 × 10−16 −0.36 ZNF514 
rs434451 T C 0.035 2.90 × 10−6 0.011 −0.42 SLC1A5 

rsID – reference SNV ID number; REF – reference allele; ALT – alternative allele; MAF 
– minor allele frequency; FDR – false discovery rate; NES – normalised effect size, is 
defined as the slope of the linear regression, and is computed as the effect of the alternative 
allele (ALT) relative to the reference allele (REF) in the human genome reference 
(i.e. the eQTL effect allele is the ALT allele). 

 

The second significant eQTL association was identified for the top lead 

SNV rs434451 with a raw p value of 2.90 × 10−6 and a risk allele C frequency of 

0.96 (refer to Table 2.5). Intriguingly, this variant was the sole variant mapped 

to the protein coding gene SLC1A5 (Solute Carrier Family 1 Member 5) 

(ENSG00000105281) on chromosome 19. The NES of −0.42 underscores a 

negative association between the rs434451 variant and the expression of  

SLC1A5 gene. 

2.2.3 Data-driven identification of aggregated (PRS) level variants 
associated with cancer risk in BRCA1 PV carriers 
In this study, we used four different PRS joint models, denoted as score1 

to score4, to estimate the genetic risk of developing BC or OC in carriers of 

BRCA1 PVs. Notably, these PRS models represent a significant advancement as 

they are the first genome-wide models that encompass over 2,000,000 SNVs, 

providing comprehensive coverage of the genetic landscape. Further details of 

each score are provided in Table 2.6. 
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Table 2.6 

Joint model characteristics employed for the risk calculations 

Score Description 
score1 The weighted effect size calculated in BC patients with BayesW model 
score2 The weighted effect size calculated in BC patients with BayesRR-RC model 
score3 The weighted effect size calculated in OC patients with BayesW model 
score4 The weighted effect size calculated in OC patients with BayesRR-RC model 

BC – breast cancer; OC – ovarian cancer. 
 

We assessed the association of four PRSs (score1–4) with the risk of 

developing BC or OC using binomial logistic regression analysis. Our goal was 

to determine the effectiveness of the recently developed PRS models (BayesW 

vs. BayesRR-RC) in predicting BC and OC risk in region-specific BRCA1 PV 

carriers in the Latvian population. This was achieved by comparing the PRS 

weighted effect size in PV carriers with cancer (BC and/or OC) vs. in PV carriers 

without cancer (unaffected). 

Among the four tested PRSs, it was evident that score1 exhibited 

the strongest association with the susceptibility to BC. The OR for score1 was 

1.37 (95 % CI = 1.03–1.81, p = 0.0291) as detailed in Table 2.7. Regardless of 

the specific PRS employed, none of the models exhibited a statistically 

significant association with the risk of OC development (p > 0.05), as presented 

in Table 2.7. 

Next, we conducted an analysis of the area under the receiver operating 

characteristic curve (AUC) to evaluate the predictive accuracy of three distinct 

models incorporating various covariates, including the PRS (Figure 2.3). 

Notably, the model that encompassed age at onset, age squared, BRCA1 PV 

status, and the most effective PRS (score1) demonstrated the highest AUC value 

of 0.7587. 
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Table 2.7 

Binomial logistic regression analysis results in three different study groups 
 

OR 95% CI p value 
BC + OC vs. Unaffected 
score1 1.14 0.89–1.46 0.3119 
score2 1.11 0.86–1.42 0.4205 
score3 1.00 0.78–1.28 0.9781 
score4 0.89 0.69–1.14 0.3514 
BRCA1:c.5266dup 1.73 1.03–2.91 0.0375* 
BC vs. Unaffected 
score1 1.37 1.03–1.81 0.0291* 
score2 1.33 1.01–1.76 0.0423* 
score3 1.00 0.76–1.31 0.9825 
score4 0.95 0.72–1.25 0.7109 
BRCA1:c.5266dup 2.55 1.44–4.53 0.0013** 
OC vs. Unaffected 
score1 0.94 0.68–1.31 0.7180 
score2 0.91 0.65–1.27 0.5800 
score3 0.99 0.71–1.38 0.9530 
score4 0.81 0.57–1.14 0.2250 
BRCA1:c.5266dup 0.93 0.48–1.79 0.8170 

BC – breast cancer; OC – ovarian cancer; BC + OC – both cancers combined; OR – odds 
ratios; 95% CI – 95% confidence interval for the associations of PRS with BC and OC 
risk in BRCA1 PV carriers. Four different PRS joint models were employed for the risk 
calculations (see Table 2.6). * p value below 0.05; ** p value below 0.01. 

 

In our comparative analysis of the three models using a bootstrap 

method, we identified a statistically significant difference (p = 0.0368), 

particularly in the AUC values between the model that included age and age 

squared as covariates and the model that included age at onset, age squared, 

BRCA1 PV status, and the highest performing PRS (score1). 
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Figure 2.3 A Comparison of the AUC (area under the receiver operating 
characteristic curve) to select the most optimal binomial logistic 

regression analysis model 
In black – the model with only age and age squared as covariates; in red – the model 

with the BRCA1 PV added; in blue – the model with the BRCA1 PV and 
the best performing PRS added (i.e. score1). 
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3 Discussion 

3.1 Main findings in the study cohort 
Our study investigated the association between specific BRCA1 PVs 

(c.4035del and c.5266dup) and the development of BC or OC. The distribution 

of these PVs among study cohort (see Table 2.1) is consistent with previous 

research, confirming their relevance within the Latvian population (Gardovskis 

et al., 2005; Tikhomirova et al., 2005). We explored the penetrance and impact 

of these BRCA1 PVs on the age of onset for BC or OC. Additionally, this dataset 

served as the basis for GWAS and PRS analyses to identify genetic factors 

affecting the penetrance of region-specific BRCA1 PVs. This detailed analysis 

may improve our understanding of the relationship between these specific 

BRCA1 PVs and BC and OC risk, guiding further research, personalised risk 

assessment, and preventative strategies. 

The objective of this study was to investigate the penetrance of specific 

BRCA1 PVs for BC and OC within the cohort. While the younger age of 

unaffected individuals might shew the penetrance estimates, this study offers 

valuable insights into the penetrance of region-specific BRCA1 PVs. 

Our findings support the concept that penetrance can vary depending on 

the localisation of specific BRCA1 PV. For instance, BRCA1:c.5266dup PV 

exhibits higher penetrance in the BC group compared to the OC group, while 

BRCA1:c.4035del PV demonstrates similar penetrance in both cancer types 

(see Table 2.2). These PVs exhibit a genotype–phenotype correlation and 

differing clinical presentations, potentially due to their position and effects on 

the BRCA1 protein. Previous research has indicated that PVs positioned towards 

the 3′ end of the BRCA1 gene (e.g. c.5266dup) are linked to a higher risk of 

developing BC, while PVs in exon 10 (e.g. c.4035del) present nearly equal 

incidences of BC and OC among PV carriers (Milne & Antoniou, 2016; Plakhins 

et al., 2011). 
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In our dataset, the BRCA1:c.4035del PV did not show statistically 

significant evidence of an increased risk for BC development compared to OC, 

supporting the observation that this specific BRCA1 PV is associated with 

relatively balanced risks for both cancer types. This highlights the potential 

significance of the position of the BRCA1 PV in risk assessment (Kuchenbaecker, 

Hopper, et al., 2017). 

Next, we performed a Cox proportional hazards regression analysis of the 

study cohort (452 individuals), which revealed a statistically significant 

influence of the BRCA1:c.5266dup PV on earlier cancer onset (combining BC 

and OC groups) compared to the BRCA1:c.4035del PV. BRCA1:c.5266dup PV 

carriers had a median age of cancer onset at 46.52 years, while BRCA1:c.4035del 

PV carriers presented at 50.62 years (see Table 2.1). The hazard ratio of 1.437 

indicated a 43.70 % increased risk of earlier cancer onset among 

BRCA1:c.5266dup PV carriers. 

Within the BC group, the BRCA1:c.5266dup PV demonstrated a 56.40 % 

higher hazard for BC development, consistent with previous findings in Latvian 

BC patients (Plakhins et al., 2011). These results highlight the necessity of 

a personalised approach in genetic counselling, incorporating two                  

region-specific BRCA1 PVs into risk management strategies such as intensified 

surveillance or risk-reducing bilateral mastectomy. 

The BRCA1:c.5266dup PV significantly influenced earlier cancer onset 

in BC but not in OC, underscoring the variant-specific effects of BRCA1 PVs on 

genotype-phenotype correlation (Milne & Antoniou, 2016; Plakhins et al., 2011). 

Interactions with other genetic or environmental factors could potentially modify 

the impact of the BRCA1:c.5266dup PV on OC development risk. The advanced 

stage at which OC is typically diagnosed might also influence the observed age 

of onset, possibly decreasing the effect of BRCA1:c.5266dup PV compared to 

BC, where early detection is more common (Thulesius et al., 2004). 
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3.2 Hypothesis-driven analysis of BRCA1 and CHEK2 
double heterozygotes 
Next, our study examined the impact of CHEK2 gene variants on BRCA1 

PV penetrance, as CHEK2 is involved in the same DNA repair pathway as 

BRCA1 gene. CHEK2 variants are frequently observed in BC and OC patients 

and have been extensively studied in several European countries (Myszka et al., 

2011; Narod & Lynch, 2007), but research in the Latvian population is limited. 

Only two previous studies by Irmejs et al. and Plonis et al. have investigated the 

association of specific CHEK2 variants with BC, OC, and colorectal cancer 

development risk (Irmejs et al., 2006; Plonis et al., 2015). 

While many studies show that SNVs in modifier genes impact PV 

penetrance, research on double heterozygous BRCA1 and CHEK2 PV carriers is 

rare. Previous studies have identified only 1 to 15 cases of such double 

heterozygotes among thousands of patients per study, mostly focusing on BC 

(Cybulski et al., 2009; Meijers-Heijboer et al., 2002; Sokolenko et al., 2014; 

Turnbull et al., 2012). 

In contrast to previous studies predominantly comparing the frequency of 

BRCA1 and CHEK2 double heterozygotes among BC patients to healthy controls 

from the general population, the primary objective of this study was to evaluate 

the hypothesis that CHEK2 variants might influence the penetrance of BRCA1 

PVs. This study was designed to assess the presence of BRCA1 and CHEK2 

double heterozygotes in BC and OC patients compared to an unaffected group 

without a cancer diagnosis at the time of the recruitment, all consisting of women 

carrying BRCA1 PVs. 

We identified 13 cases of BRCA1 and CHEK2 double heterozygotes 

(see Table 2.3), which is consistent with previous research. Our findings suggest 

a tendency towards earlier OC onset in double heterozygotes compared to 

BRCA1 PV carriers alone, but this was not statistically significant. The results 
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align with previous studies showing no significant impact of CHEK2 variants on 

cancer onset in BRCA1 PV carriers (Cybulski et al., 2009; Sokolenko et al., 2014, 

Sukumar et al., 2021). 

Previous research in other populations, as well as in Latvia, has 

demonstrated lower frequencies of CHEK2 variants in BRCA1 PV carriers 

compared to BC patients without BRCA1 PVs, suggesting a negative interaction 

between these variants (Cybulski et al., 2009; Irmejs et al., 2006;                   

Meijers-Heijboer et al., 2002; Plonis et al., 2015; Sokolenko et al., 2014; 

Turnbull et al., 2012). This could be due to reduced viability of cells with both 

variants, as both gene products are involved in the same DNA repair pathway 

(Bartek & Lukas, 2003; Collins & Garrett, 2005; Lee et al., 2000). 

In conclusion, no statistically significant evidence has emerged 

regarding the impact of pathogenic/likely pathogenic CHEK2 variants on the risk 

of BC or OC development in BRCA1 PV carriers. The modest sample size may 

limit the statistical power, and larger studies are needed to enhance the credibility 

of these findings. 

3.3 Data-driven identification of single level variants associated 
with cancer risk in BRCA1 PV carriers 
To perform a data-driven identification of single level variants associated 

with BC or OC development risk in BRCA1 PV carriers, we conducted a GWAS 

analysis. The objective of this study was to evaluate common genetic variants 

associated with BC or OC susceptibility as potential modifiers of cancer 

development risk in BRCA1 PV carriers. Due to a relatively small size of 

the study cohort, the GWAS power was sufficient only for the identification of 

common genetic variants. 

Our study explored the genetic landscape of region-specific BRCA1 PVs 

(c.4035del and c.5266dup) and their association with the risk of BC or OC 

development within a clinical cohort from the Latvian population. By employing 



 

38 

the GWAS approach, we identified 18 genomic risk loci associated with BC 

development risk and 21 risk loci associated with OC development risk. Despite 

numerous large-scale GWAS conducted both in the general population and 

among BRCA1 PV carriers, which have successfully identified over a hundred 

loci associated with BC and OC development risk, none of the risk loci identified 

in our study have been previously reported. Furthermore, our cohort did not 

replicate previous GWAS results (Couch et al., 2013; Kuchenbaecker et al., 

2015; Milne & Antoniou, 2016; Milne et al., 2017; Yang et al., 2022). 

The absence of previously reported risk loci in our study can likely be 

explained by our unique study design and possible differences in methodology. 

Firstly, most previously identified susceptibility SNVs were discovered within 

the general population (Amos et al., 2017; Jurj et al., 2020; Michailidou et al., 

2017; Phelan et al., 2017). However, it has been demonstrated that SNVs 

commonly identified in the general population may not consistently elevate BC 

or OC risk in BRCA1 PV carriers (Coignard et al., 2021). Additionally, most 

association studies in BRCA1 PV carriers have used a case-control design, where 

controls consist of healthy women from the general population without 

diagnosed BRCA1 PVs (Milne & Antoniou, 2016). In contrast, our study design 

specifically focused on BRCA1 PV carriers, allowing to identify carrier-specific 

susceptibility SNVs (Coignard et al., 2021). Consequently, our study might not 

be directly comparable with the results of most studies. Furthermore, while other 

studies may have focused on broad consortium sample pools with diverse BRCA1 

PVs (Rebbeck et al., 2018), our analysis focused on the region-specific BRCA1 

PVs characteristic of the Latvian population and Baltic region (Gardovskis et al., 

2005; Janavičius et al., 2014; Tamboom et al., 2010; Tikhomirova et al., 2005). 

After exceeding the genome wide suggestive significance threshold of 

p < 1 × 10−6, our analysis identified 27 independent significant SNVs in the BC 

group and 25 in the OC group, suggesting a potential role for these SNVs in 
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cancer susceptibility. Furthermore, the dataset contained a substantial number of 

candidate SNVs in LD (r2 > 0.6) with the identified independent significant 

SNVs, resulting in 1152 candidates in the BC group and 633 candidates in 

the OC group. Most of these candidates were located in non-coding regions of 

the genome, suggesting the importance of regulatory regions outside of coding 

areas in influencing the risk of cancer development and highlighting the need for 

further in-depth functional exploration. Moreover, a comprehensive examination 

of global GWAS data has revealed that most common variants associated with 

cancer susceptibility are found within non-coding regions of the genome and are 

believed to affect cancer risk through the regulation of certain gene expression 

(Amos et al., 2017; Edwards et al., 2013; Yang et al., 2022). 

In the following paragraphs, we will explore the most significant GWAS 

results in detail, offering valuable resources for future research and novel insights 

into the complex interplay between genetic modifiers of cancer risk and       

region-specific BRCA1 PVs in the Latvian population. Table 2.4 presents three 

of the most significant genetic variants associated with BC or OC development 

risk. Interestingly, all three variants exhibited a negative beta, suggesting 

a potential protective effect on cancer development. 

The most significantly associated lead variant with BC development risk 

was intronic variant rs2609813 of the FAM107B gene. A protein coding gene 

FAM107B, a member of the Family with Sequence Similarity 107 (FAM107) 

family of proteins, remains understudied with limited available biological data. 

Despite this, the N-terminal domain (DUF1151) structure of these gene family 

members is highly conserved across species and suggests their role in regulating 

gene transcription. The FAM107B protein appears to affect the rearrangement of 

the cytoskeleton and plays a role in cell migration and proliferation. However, 

the molecular mechanisms underlying the biological functions of FAM107B 

remain unclear (Nakajima & Koizumi, 2014). 
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Previous studies have suggested the FAM107 gene family as candidate 

tumour suppressors, with FAM107A, previously known as DRR1, showing 

a correlation between downregulation and increased tumourigenesis across 

various malignancies, including non-small cell lung cancer, renal cell cancer, 

prostate cancers, and astrocytoma (Liu et al., 2009; van den Boom et al., 2006; 

Wang et al., 2000). Although FAM107B gene shares structural similarities, its 

specific role as tumour suppressor remains unclear. Studies have observed 

reduced expression of FAM107B in different tumour tissues, including breast, 

thyroid, gastric, and colon cancer cells, suggesting its potential involvement in 

tumour development. Experimental evidence also indicates that increased 

FAM107B expression inhibits cancer cell proliferation (Nakajima et al., 2010; 

Nakajima et al., 2012), and the inhibition of FAM107B significantly increases 

proliferation and migratory ability of gastric cancer cells, supporting 

the hypothesis that FAM107B acts as a tumour suppressor gene (Guo et al., 

2017). Furthermore, decreased expression of FAM107B has been observed in BC 

tissues, particularly in aggressive phenotypes associated with increased risk of 

disease recurrence and shortened survival (Nakajima et al., 2012). 

The identified negative effect size of the variant rs2609813, predicted 

to be a regulatory region variant, suggests its potential protective effect by 

affecting other gene expression in BRCA1 PV carriers. Overall, FAM107B 

emerges as a promising candidate tumour suppressor gene in BC, and further 

research should focus on studying the mechanisms of this regulatory region 

variant. 

The second most significant SNV suggestively associated with BC 

development risk was rs4688094 within the novel lncRNA RP11-384F7.1 and 

its biological function is unknown. Therefore, it is difficult to predict 

the functional consequence of this variant. 
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LncRNAs have emerged as important regulators in cancer development 

and progression, influencing various biological processes such as proliferation, 

apoptosis, metastasis, and drug resistance (Arun et al., 2018; Liu et al., 2021). 

The dysregulation of lncRNAs has been linked to a variety of cancer related 

characteristics, acting as both oncogenes and tumour suppressors               

(Fonseca-Montaño et al., 2023). They can regulate other gene expression at 

various levels, including chromatin modification, transcription, and                   

post-transcriptional processing of RNA, indicating their potential as therapeutic 

targets (Gutschner & Diederichs, 2012). Moreover, dysregulation of specific 

lncRNAs has been associated with different BC subtypes and clinical outcomes, 

supporting their potential as diagnostic and prognostic biomarkers (Su et al., 

2014; Zhao et al., 2021). 

The novel lncRNA reported in this study has not been previously 

associated with BC. Furthermore, the observed negative beta coefficient suggests 

a potential protective effect associated with the risk allele C. This highlights 

the importance for further investigation into the functional implications of 

the rs4688094 variant and its impact on RP11-384F7.1 expression. 

The only lead variant surpassing the genome-wide suggestive 

significance threshold within the OC group was rs79732499, located in an 

intergenic regulatory region. This variant demonstrates high LD with several 

variants within the C20orf194 gene, also known as DNAAF9, suggesting 

a potential impact on DNAAF9. 

The information about DNAAF9 functions is limited, but current 

knowledge suggests it is involved in microtubule interaction and tubulin 

assembly (Casalou et al., 2020). According to UniProt database, it may function 

as an effector for ARL3 (ADP Ribosylation Factor Like GTPase 3). While 

the functional role of ARL3 in cancer remains unknown, observations in glioma 
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indicate that ARL3 plays a role in angiogenesis and immune cell infiltration in 

the tumour microenvironment (Casalou et al., 2020; Wang et al., 2019). 

Despite the negative effect size of the identified rs79732499 variant, 

suggesting a potential protective effect in BRCA1 PV carriers, the precise 

function of DNAAF9 in cancer remains unknown. Further investigation is 

necessary to understand its function and potential implications in OC. 

Next, we investigated the effect of SNVs on gene expression in breast and 

ovary tissue using eQTL mapping with the GTEx dataset. While no significant 

SNV-gene associations were observed in ovarian tissue, two SNVs, rs10178186 

and rs434451, were identified to affect gene expression in breast tissue                

(see Table 2.5). 

The first identified eQTL variant rs10178186 is associated with reduced 

ZNF514 expression. Zinc finger proteins (ZNFs), including ZNF514, are 

transcription factors suggested to play a role in carcinogenesis, cancer 

progression, and metastasis across various cancers. Despite their large number, 

most of the ZNFs are not well studied (Luo et al., 2018; Ye et al., 2021). 

While previous studies have implicated the role of certain ZNFs in 

carcinogenesis, further functional studies are needed to fully understand their 

potential role and impact on BC development. For instance, ZNF165 has been 

associated with promoting triple-negative BC (TNBC) development, potentially 

promoting more aggressive carcinogenesis (Gibbs et al., 2020). Conversely, 

the hypermethylated ZNF154 promoter has been associated with increased 

survival rates in resectable pancreatic cancer (Wiesmueller et al., 2019). 

The second eQTL variant, rs434451, is associated to reduced expression 

of SLC1A5, a gene encoding a cell surface solute-carrying transporter important 

for maintaining the uptake of neutral amino acids, particularly glutamine, crucial 

for cancer cell metabolism (Alfarsi et al., 2021; van Geldermalsen et al., 2016). 

The observed negative association between the rs434451 variant and SLC1A5 
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expression in BRCA1 PV carriers suggests a potential role in modulating 

glutamine metabolism and, consequently, tumour growth in BC. 

Pharmacological studies have demonstrated that inhibiting SLC1A5-mediated 

transport reduces glutamine uptake, leading to decreased cancer cell proliferation 

and increased cell death, especially in TNBC cells (van Geldermalsen et al., 

2016). Additionally, SLC1A5 expression is associated with sensitivity to 

endocrine therapy in luminal BC, suggesting its potential utility as a predictive 

biomarker of treatment response (Alfarsi et al., 2021). 

Previous research highlights the significance of SLC1A5 and its 

associated transporters in cancer cell metabolism, growth, and proliferation. 

While preclinical studies have shown promising results with SLC1A5 inhibitors, 

there are currently no clinical trials testing them (Nachef et al., 2021). Further 

research is required to fully understand the role of SLC1A5 and its potential as 

a therapeutic target in BC. 

In conclusion, additional studies are necessary to understand the potential 

importance of ZNF514 and SLC1A5 expression in BC development risk for 

BRCA1 PV carriers. More in-depth investigations into the precise mechanisms 

underlying their role in tumour growth, progression, and response to therapy are 

needed. 

3.4 Data-driven identification of aggregated (PRS) level variants 
associated with cancer risk in BRCA1 PV carriers 
In this study, we investigated the association between two recently 

reported novel genome-wise PRSs (Orliac et al., 2022), containing 2,174,072 

SNVs, with the risk of BC and OC in BRCA1 PV carriers. While the best 

approach to select the SNV set and to determine their weights to generate 

the most effective PRS remains uncertain, our hypothesis focused on the joint 

estimation of the effects of genome-wise SNVs in the PRS models. Our goal was 



 

44 

to increase prediction accuracy compared to commonly used approaches for PRS 

development (Dareng et al., 2022). 

Since the majority of PRSs, including those under evaluation in this 

research, are derived from cohorts within the general population, it is important 

to carefully review and validate their performance, particularly in individuals 

carrying BRCA1 PVs (Jones et al., 2017; Mavaddat et al., 2019; Michailidou 

et al., 2017). The variable penetrance of germline PVs in the BRCA1 gene poses 

a significant challenge in estimating the likelihood, age, and site of cancer onset 

for each individual. As a result, it is important to explore effective strategies for 

initiating prophylactic screening and clinical management in high-risk women 

(Chen et al., 2020; Downs et al., 2019). PRS has the potential in stratifying 

individuals based on their disease risk (Mars et al., 2020). However, to achieve 

this goal and integrate PRSs into clinical practice, it is essential to identify 

the most optimal set of SNVs that contribute to the best performing PRS. 

The results of this study demonstrate the effectiveness of the best fitting 

BayesW PRS model in accurately predicting an individual’s susceptibility to 

developing BC. While the BayesRR-RC PRS model performed well in predicting 

the risk of developing BC, the BayesW PRS model remained superior 

(see Table 2.7). 

In previous study Kuchenbaecker et al. developed three PRSs for overall 

BC, ER-positive and ER-negative BC, as well as one for OC patients. Their 

research involved data from 15,252 female BRCA1 PV carriers, revealing strong 

associations between the PRS and the risk of both BC and OC. Particularly, 

the PRS for ER-negative BC exhibited the strongest association with the BC risk 

(HR = 1.27, 95 % CI = 1.23–1.31, p = 8.2 × 10−53) (Kuchenbaecker, McGuffog, 

et al., 2017). 

Similar findings were replicated by Barnes et al. in a study that included 

9473 female BRCA1 PV carriers with diagnosed BC (Barnes et al., 2020), 
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highlighting that the ER-negative PRS demonstrated the strongest association 

with BC risk in BRCA1 PV carriers (HR = 1.29, 95 % CI = 1.25–1.33, 

p = 3 × 10−72). Considering that ER-negative BC is the predominant tumour 

subtype in BRCA1 PV carriers (Foulkes et al., 2004), these studies highlight 

the strong association of BC subtype-specific PRS with the risk of BC 

development. This underscores that the most accurate prediction of BC 

development risk involved integrating comprehensive clinical data into 

the analysis (Barnes et al., 2020; Kuchenbaecker, McGuffog, et al., 2017). 

Unfortunately, because of insufficient clinical data, our study was unable to 

incorporate the information regarding ER status. The available information on 

ER status was only accessible for a small fraction (< 80) of BC patients. 

Other study by Mavaddat et al. demonstrated a strong association between 

PRS and the overall risk of developing BC in the general population (OR = 1.61, 

95 % CI = 1.57–1.65, with AUC = 0.630, 95 % CI = 0.628–0.651) (Mavaddat 

et al., 2019). Our results are consistent with previous research, indicating that 

the calculated OR for BC in individuals with BRCA1 PVs are lower than 

previously published estimates in the general population. This suggests 

the existence of a potential subset of SNVs within the PRS that might not 

combine multiplicatively with the status of BRCA1 PVs. However, it is essential 

to acknowledge that potential limitations of direct comparisons may arise from 

variations in study designs and sample sizes (Kuchenbaecker, McGuffog, et al., 

2017). 

Our study did not identify any statistically significant association with 

OC, in contrast to previous studies that have consistently indicated a substantial 

association between PRS and the risk of OC (Barnes et al., 2020; Kuchenbaecker, 

McGuffog, et al., 2017). We observed that the genome-wise PRS was more 

effective in predicting the risk of developing BC than OC in BRCA1 PV carriers 

(OR = 1.37, 95 % CI = 1.03–1.81, p = 0.029 for BC vs. OR = 0.99, 
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95 % CI = 0.71–1.38, p = 0.95 for OC). The observed results might be 

influenced by the limited sample size of 121 BRCA1 PV carriers diagnosed with 

OC in our study cohort. 

3.5 Strengths and weaknesses of the study 
As of November 2023, the NCBI ClinVar database 

(https://www.ncbi.nlm.nih.gov/clinvar/) contained 3,264 germline BRCA1 PV 

records (including deletions, duplications, indels, insertions, and SNVs,  

all < 50 bp). However, our study focused on a genetically homogenous cohort 

consisting of women carrying one of two region-specific BRCA1 PVs (c.4035del 

or c.5266dup). Most existing penetrance estimates are derived from large-scale 

studies combining data from multiple populations, often overlooking 

the penetrance specific to founder PVs within the distinct populations.        

Population-specific genetic structures can influence study outcomes, as certain 

SNVs of modifier genes may be more prevalent in one population while rare in 

another (Narod, 2002). This is supported by Pankratov et al., who suggested that 

local population history and genetic structure can significantly influence 

association analysis (Pankratov et al., 2020). Therefore, studies in founder 

populations are beneficial for evaluating region-specific penetrance of BRCA1 

PVs and identifying modifying genetic factors. 

Additionally, while the genome-wise PRSs used in our study were 

initially developed within a population-based framework using data from the UK 

Biobank and Estonian Genome Centre participants (Orliac et al., 2022), our 

results represent an independent evaluation of these PRSs specifically within 

the subset of region-specific BRCA1 PV carriers from the Latvian population. 

We believe that these genome-wise PRSs have the potential to provide 

equivalent, if not superior, predictive capabilities compared to previously 

developed PRSs. 

https://www.ncbi.nlm.nih.gov/clinvar/
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However, we encountered several limitations, primarily due to the small 

number of patients with the double heterozygous BRCA1 and CHEK2 genotype. 

This was mainly due to the limited cohort size and the rarity of this genotype 

(Cybulski et al., 2009). A larger cohort is necessary to verify the hypothesis that 

double heterozygotes may have a higher risk of BC or OC, potentially achievable 

through consortiums or larger collaborative studies. Additional double 

heterozygotes may be identified with the increasing use of whole exome 

sequencing (WES) or WGS. 

Other limitation includes a small number of BC and OC cases with 

germline BRCA1 PVs and potential selection biases, since the samples were 

obtained during diagnostic germline variant testing in a clinical setting. Our focus 

on two specific BRCA1 PVs might not fully represent the entire population of 

BRCA1 PV carriers. Additionally, our PRS analysis was limited by missing 

SNVs, which could be improved by incorporating a more population-specific 

reference panel for the imputation step from the Genome Database of Latvian 

Population (LGDB) once the relevant WGS data becomes available (Rovite 

et al., 2018). 

The significant age difference among the groups might have influenced 

the penetrance estimates, which could be addressed in future studies by using 

an age-matched study cohort. Moreover, the absence of detailed clinical 

information on tumour phenotypes made our results an average estimation across 

all BC and OC phenotypes. 

Finally, the complex interplay of SNVs and the predominance of 

identified non-coding variants highlight the critical need for extensive               

post-GWAS analysis and in-depth functional studies to interpret the specific 

impact of identified SNVs on a particular phenotypes (Milne & Antoniou, 2016; 

Yang et al., 2022). 
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3.6 Future perspectives 
Understanding how the identified genetic variants impact the penetrance 

of specific BRCA1 PVs (c.4035del and c.5266dup) is critical for more precise 

risk assessment and the development of potential prophylactic and therapeutic 

strategies for individuals carrying these BRCA1 PVs (Mars et al., 2020). 

One future direction could involve longitudinal studies, where 

participants are recruited at a younger age and observed over an extended period 

of time. Additionally, incorporating more comprehensive data of modifiable risk 

factors, including smoking status, alcohol consumption, physical activity, and 

dietary habits, would enhance risk assessment (Milne & Antoniou, 2016). 

Another perspective could be the deployment of different technology, such as 

WGS, which has the potential to reveal additional variants that have not been 

covered by microarray technology. The LGDB is a promising initiative for 

studying BRCA1 PVs in the Latvian population (Rovite et al., 2018), as well as 

exploring other genetic factors influencing their penetrance, including PRSs. 

This initiative, using WGS data, increases the likelihood of discovering more 

clinically significant variants. 

However, further validation using a larger study group consisting of 

region-specific BRCA1 PV carriers is necessary, and our study can serve as 

preliminary data for a more extensive comparison of all available PRSs. It is 

important to highlight that the risks of subsequent secondary malignancies were 

not considered in our analysis, but instead, it focused solely on the first 

occurrence of BC or OC. In future perspective, exploring whether the tested 

PRSs also contribute to the prediction of subsequent secondary cancers among 

BRCA1 PV carriers would be beneficial. 
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Conclusions 

1. Based on this study, none of the tested CHEK2 variants demonstrate 

a significant influence on the penetrance of BRCA1 pathogenic variants 

(c.4035del and c.5266dup). 

2. Among breast cancer patients, the intronic variant rs2609813 in 

the FAM107B gene exhibits the most significant association with BRCA1 

pathogenic variant penetrance in this study (p = 2.33 × 10−7, OR = 0.28). 

3. Among ovarian cancer patients, the variant rs79732499, located in                      

the non-coding regulatory region of the genome, exhibits the most significant 

association with BRCA1 pathogenic variant penetrance in this study 

(p = 1.38 × 10−7, OR = 0.00031). 

4. Among the genome-wise PRSs tested in this study, the BayesW PRS model 

contributes to assessing the risk of breast cancer development for germline 

BRCA1 pathogenic variant (c.4035del or c.5266dup) carriers, and it may 

improve patient stratification and decision-making regarding breast cancer 

treatment and prevention strategies for female carriers of BRCA1 pathogenic 

variant. 
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Proposals 

As the LGDB initiative is evolving and the number of Latvian donors 

increases, we propose the potential implementation of a genotype-first approach 

for systematic screening of region-specific BRCA1 PVs in our population. This 

could be a progressive step toward a more personalised and effective healthcare 

system, that has been inspired by several successful implementations in other 

global biobank projects, such as in Estonia or Australia (Leitsalu et al., 2021; 

Rowley et al., 2019). The genotype-first approach offers an innovative way to 

identify individuals carrying clinically significant PVs in high-penetrance 

BRCA1 gene, regardless of their family history or medical indication. 

Additionally, it allows for cancer risk stratification based on their PRSs. 

The primary objective of this proposal is to enhance risk stratification and 

long-term outcomes for region-specific BRCA1 PV carriers in the Latvian 

population who may be unaware of their genetic predisposition to BC or OC. 

This strategy of enhanced risk stratification will enable individuals and 

healthcare providers to take more targeted and effective preventive measures, 

potentially reducing the incidence and impact of BC and OC. 

Recontacting the individuals that have been identified as a clinically 

significant PV or high-risk PRS carriers will ensure that they receive 

a comprehensive genetic counselling about their cancer risk. This strategy can 

improve the long-term outcomes of high-risk individuals and their relatives by 

prioritising the genetic screening and recontacting individuals carrying clinically 

significant PVs, thereby contributing to the overall health of the Latvian 

population. 
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