Pārlekt uz galveno saturu

Biostatistika

Studiju kursa apraksts

Kursa apraksta statuss:Apstiprināts
Kursa apraksta versija:16.00
Kursa apraksta apstiprināšanas datums:26.08.2024 16:16:17
Par studiju kursu
Kursa kods:SL_004LKI līmenis:7. līmenis
Kredītpunkti:2.00ECTS:3.00
Zinātnes nozare:Matemātika; Varbūtību teorija un matemātiskā statistikaMērķauditorija:Zobārstniecība
Studiju kursa vadītājs
Kursa vadītājs:Madara Miķelsone
Studiju kursa īstenotājs
Struktūrvienība:Statistikas mācību laboratorija
Struktūrvienības vadītājs:
Kontaktinformācija:Baložu 14, A korpuss, Rīga, +371 67060897, statistikaatrsu[pnkts]lv, www.rsu.lv/statlab
Studiju kursa plānojums
Pilns laiks - 1. semestris
Lekcijas (skaits)0Lekciju ilgums (akadēmiskās stundas)0Kopā lekciju kontaktstundas0
Nodarbības (skaits)11Nodarbību ilgums (akadēmiskās stundas)3Kopā nodarbību kontaktstundas33
Kopā kontaktstundas33
Studiju kursa apraksts
Priekšzināšanas:
Vidējās izglītības līmenim atbilstošas zināšanas matemātikā un informātikā.
Mērķis:
Iegūt pamatzināšanas un prasmes statistiskajās datu apstrādes metodēs (aprakstošā statistika, slēdzienstatistikas metodes starpgrupu atšķirību novērtēšanai un saistību izpētei starp dažādiem mainīgajiem), kas nepieciešamas zinātniski pētnieciskā darba izstrādei un statistisko rādītāju pielietošanai savā specialitātē.
Tēmu saraksts (pilna laika studijas)
Nr.TēmaĪstenošanas formaSkaitsNorises vieta
1Ievads statistikā, statistikas loma pētījuma procesā. Datu veidi, mērskalas, datu ievade, datu sagatavošana MS Excel. Iepazīšanās ar IBM SPSS. Pamatdarbības ar datiem IBM SPSS programmā.Nodarbības1.00datorklase
2Aprakstošās statistikas rādītāji.Nodarbības1.00datorklase
3Normālsadalījums un tā raksturojošie aprakstošās statistikas rādītāji. Ticamības intervāli.Nodarbības1.00datorklase
4Statistiskās hipotēzes, to veidi. Hipotēžu pārbaude. P vērtība. Izlases lieluma aprēķināšana. Kvalitatīvo datu apstrāde. Atkarīgas un neatkarīgas izlases.Nodarbības1.00datorklase
5Parametriskas datu apstrādes metodes kvantitatīvajiem datiem. Neatkarīgo un atkarīgo izlašu salīdzināšana.Nodarbības1.00datorklase
6Neparametriskas datu apstrādes metodes kvantitatīvajiem datiem un datiem ordinālā skalā. Neatkarīgo un atkarīgo izlašu salīdzināšana.Nodarbības1.00datorklase
7Korelācijas analīze. Regresijas analīze (Lineārā regresija).Nodarbības1.00datorklase
8Regresijas analīze (Binārā loģistiskā regresija). ROC līknes.Nodarbības1.00datorklase
9Kopsavilkums un praktiskais darbs ar datiem IBM SPSS.Nodarbības1.00datorklase
10Zinātnisko publikāciju analīze.Nodarbības1.00datorklase
11Patstāvīgais darbs ar datiem IBM SPSS.Nodarbības1.00datorklase
Vērtēšana
Patstāvīgais darbs:
1. Individuālais darbs ar literatūru – sagatavošanās katrai nodarbībai, atbilstoši tematiskajam plānam. 2. Patstāvīga zinātniskās publikācijas analīze - katram studentam patstāvīgi jāsameklē pilna teksta zinātniskā publikācija, kurā izmantota kāda no kursā apgūtajām datu analīzes metodēm, un jāuzstājas ar 5-7 minūšu prezentāciju par statistikas metožu izmantošanu, rezultātu atspoguļošanu un korektu slēdzienu formulēšanu. 3. Patstāvīgais darbs – katram studentam būs jāizpilda četri uzdevumi, kuros būs iekļauti slēgta un atvērta tipa jautājumi, iekļaujot aprakstošās statistikas rādītājus un slēdzienstatistiku. Lūgums pēc kursa apguves izpildīt anketu un sniegt mums atgriezenisko saiti par šo kursu, mēs to ļoti novērtēsim!
Vērtēšanas kritēriji:
Lai sekmīgi apgūtu studiju kursa vielu un sagatavotos studiju kursa gala pārbaudījumam, studējošais veic sekojošas aktivitātes (obligātas, netiek vērtētas ar atzīmi): 1. Līdzdalība praktiskajās nodarbībās. Par katru kavēto nodarbību - nodarbības atstrāde pievienojoties citai grupai pie esošā docētāja vai nodarbības temata apguve pašmācības ceļā - obligāti aizpildot pašpārbaudes jautājumus e-studijās. 2. Publikācijas analīzes mutiska prezentācija. Kursa gala vērtējums (atzīme) kumulatīvs: 50% – eksāmens - patstāvīgais darbs. 50% – daudzatbilžu tests ar 30 teorētiskiem un praktiskiem jautājumiem statistikā ar laika limitu 45 minūtes.
Gala pārbaudījums (pilna laika studijas):Eksāmens (Rakstisks)
Gala pārbaudījums (nepilna laika studijas):
Studiju rezultāti
Zināšanas:Pēc studiju kursa prasību izpildes studējošie būs apguvuši zināšanas, kas ļaus: * atpazīt statistisko terminoloģiju un izmantotās pamatmetodes dažāda veida publikācijās; * pārzināt MS Excel un IBM SPSS piedāvātas iespējas datu apstrādē; * pārzināt kritērijus datu apstrādes metožu izmatošanai; * pareizi interpretēt svarīgākos statistiskos rādītājus.
Prasmes:Studiju kursa apguves rezultātā studenti pratīs: * ievadīt un rediģēt datus datorprogrammās MS Excel un IBM SPSS; * korekti sagatavot datus statistiskai apstrādei; * izvēlēties piemērotas datu apstrādes metodes, t.sk., spēs veikt statistisko hipotēžu pārbaudes; * statistiski apstrādāt pētījuma datus, izmantojot datorprogrammas MS Excel un IBM SPSS; * izveidot tabulas un diagrammas MS Excel un IBM SPSS programmās ar iegūtajiem rezultātiem; * korekti aprakstīt iegūtos pētījuma rezultātus.
Kompetences:Studiju kursa apguves rezultātā studenti būs spējīgi argumentēti pieņemt lēmumu par statistiskas datu apstrādes metožu izmantošanu pētījuma mērķa sasniegšanai un, izmantojot datorprogrammas MS Excel un IBM SPSS, praktiski pielietot apgūtās statistiskās pamatmetodes pētījumu datu apstrādē.
Bibliogrāfija
Nr.Atsauce
Obligātā literatūra
1Peat J. & Barton B. Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal. 2nd edition. John Wiley & Sons, 2014.
2Field A. Discovering Statistics using IBM SPSS Statistics. 4th edition. Sage Publications, 2018.
3Petrie A. & Sabin C. Medical Statistics at a Glance. 4th edition. Wiley-Blackwell, 2020.
4Grech, V. Write a Scientific Paper (WASP): Effective graphs and tables. Early Human Development, 2019. 134, 51-54. DOI: 10.1016/j.earlhumdev.2019.05.013.