.
Mathematics
Study Course Description
Course Description Statuss:Approved
Course Description Version:1.00
Study Course Accepted:02.04.2024 15:16:21
Study Course Information | |||||||||
Course Code: | SZF_082 | LQF level: | Level 6 | ||||||
Credit Points: | 3.33 | ECTS: | 5.00 | ||||||
Branch of Science: | Mathematics | Target Audience: | Management Science; Marketing and Advertising | ||||||
Study Course Supervisor | |||||||||
Course Supervisor: | Evija Liepa-Hazeleja | ||||||||
Study Course Implementer | |||||||||
Structural Unit: | Faculty of Social Sciences | ||||||||
The Head of Structural Unit: | |||||||||
Contacts: | Dzirciema street 16, Rīga, szfrsu[pnkts]lv | ||||||||
Study Course Planning | |||||||||
Full-Time - Semester No.1 | |||||||||
Lectures (count) | 7 | Lecture Length (academic hours) | 2 | Total Contact Hours of Lectures | 14 | ||||
Classes (count) | 7 | Class Length (academic hours) | 2 | Total Contact Hours of Classes | 14 | ||||
Total Contact Hours | 28 | ||||||||
Part-Time - Semester No.1 | |||||||||
Lectures (count) | 5 | Lecture Length (academic hours) | 2 | Total Contact Hours of Lectures | 10 | ||||
Classes (count) | 4 | Class Length (academic hours) | 2 | Total Contact Hours of Classes | 8 | ||||
Total Contact Hours | 18 | ||||||||
Study course description | |||||||||
Preliminary Knowledge: | Basic economics and mathematics at the secondary school level. | ||||||||
Objective: | To provide knowledge of advanced mathematical methods related to solving various economic problems. To form a notion of possibilities for mathematical modelling and analysis of economic and business management situations. | ||||||||
Topic Layout (Full-Time) | |||||||||
No. | Topic | Type of Implementation | Number | Venue | |||||
1 | Logical operations with expressions. Predicates. Quantifiers. | Lectures | 1.00 | auditorium | |||||
2 | Determinants. Matrices, operations with them. | Lectures | 1.00 | auditorium | |||||
Classes | 1.00 | auditorium | |||||||
3 | Concept of function, properties of functions. | Lectures | 1.00 | auditorium | |||||
Classes | 1.00 | auditorium | |||||||
4 | Function boundary concept, continuous, interrupted functions. | Lectures | 1.00 | auditorium | |||||
5 | The first order derivative of a function. | Lectures | 1.00 | auditorium | |||||
6 | Function research algorithm. | Lectures | 1.00 | auditorium | |||||
7 | Functions of two variables. | Classes | 1.00 | auditorium | |||||
8 | Calculation of the indefinite integral. Integration technique. | Classes | 1.00 | auditorium | |||||
9 | Calculation of the definite integral. Improper integrals. | Classes | 1.00 | auditorium | |||||
10 | Concepts of financial mathematics. | Lectures | 1.00 | auditorium | |||||
11 | Annuity. Loans. | Classes | 2.00 | auditorium | |||||
Topic Layout (Part-Time) | |||||||||
No. | Topic | Type of Implementation | Number | Venue | |||||
1 | Logical operations with expressions. Predicates. Quantifiers. | Lectures | 1.00 | auditorium | |||||
2 | Determinants. Matrices, operations with them. | Lectures | 1.00 | auditorium | |||||
Classes | 1.00 | auditorium | |||||||
3 | Concept of function, properties of functions. | Lectures | 1.00 | auditorium | |||||
4 | Function boundary concept, continuous, interrupted functions. | Lectures | 1.00 | auditorium | |||||
6 | Function research algorithm. | Lectures | 1.00 | auditorium | |||||
7 | Functions of two variables. | Classes | 1.00 | auditorium | |||||
8 | Calculation of the indefinite integral. Integration technique. | Classes | 1.00 | auditorium | |||||
9 | Calculation of the definite integral. Improper integrals. | Classes | 1.00 | auditorium | |||||
Assessment | |||||||||
Unaided Work: | Learning and completing assignments on each topic. In order to evaluate the quality of the study course as a whole, the student must fill out the study course evaluation questionnaire on the Student Portal. | ||||||||
Assessment Criteria: | All completed practical work and acquisition of theory, report, exam. | ||||||||
Final Examination (Full-Time): | Exam (Written) | ||||||||
Final Examination (Part-Time): | Exam (Written) | ||||||||
Learning Outcomes | |||||||||
Knowledge: | After the completion of the course, students acquire knowledge in advanced mathematics. | ||||||||
Skills: | Students will be able to create and solve linear equation systems, work with matrices, study functions and solve tasks in financial mathematics. | ||||||||
Competencies: | Students will be able to classify sets, perform economic interpretation of matrices, explain function research algorithm, define concepts of financial mathematics. | ||||||||
Bibliography | |||||||||
No. | Reference | ||||||||
Required Reading | |||||||||
1 | Āboliņa B. Rokasgrāmata matemātikā: vecāko klašu skolēniem un studentiem. R: 2017 | ||||||||
2 | Revina I., Peļņa M., Bāliņa S. Uzdevumu krājums matemātikā ekonomistiem. R: Zvaigzne ABC, 2002. | ||||||||
3 | Vintere A., Čerņajeva S. Mācību līdzeklis augstākās matemātikas pamatu apguvei. Jelgava: 2016. | ||||||||
4 | Volodko I. Augstākā matemātika. Īss teorijas izklāsts. Uzdevumu risinājumu paraugi. I daļa, Rīga, Zvaigzne ABC, 2007, 294. lpp. | ||||||||
Additional Reading | |||||||||
1 | Mizrahi A., Sullivan M. Mathematics for Business and Social Sciences. Wiley&Sons, 1998. - 696.p. | ||||||||
2 | Veģere S., Volodko I., Koliškins A., Kremeņeckis V. Matemātikas uzdevumu risināšana ar Mathematica 5. Rīga, 2009 | ||||||||
3 | Stillwell J. Mathematics and Its History. 2nd edition. Springer, 2010. | ||||||||
4 | Tucker A. Applied Combinatorics. Wiley, 2012. | ||||||||
5 | Buiķis M., Siliņa B. Matemātika. Definīcijas. Formulas. Aprēķinu algoritmi. Zvaigzne ABC, 1997, 288 lpp. |