Medical Biochemistry (CFUBK_082)
About Study Course
Objective
To provide theoretical and practical knowledge of biochemical processes (digestion and metabolism) occurring in human organism on a molecular level. To facilitate the understanding of regulatory mechanisms of biochemical processes both on molecular as well as on physiological level. To elucidate differences in and specific adaptations of biochemical processes in various tissues/organs (cell metabolism). To gain insight in pathological processes related to energy metabolism. To know the use of important biochemical markers and understand basic principles of their quantitative and qualitative detection methods.
Prerequisites
Physics, chemistry, biology, anatomy.
Learning outcomes
On completion of the course students will be able to:
• explain and describe the synthesis and hydrolysis of proteins, lipids, nucleic acids, and carbohydrates;
• name factors influencing enzyme activity;
• classify digestive enzymes according to their mechanism of action and name the enzymes involved in digestion of the main nutrient classes;
• recognise and name the basic metabolites of carbohydrate metabolism, name enzymes and characterise their principle of action, explain the role and regulation of various metabolic pathways and cycles (e.g. glycolysis, oxidative decarboxylation and the Krebs cycle, glycogen synthesis and breakdown);
• identify and recognise the major metabolites of lipid metabolism, name enzymes and describe their principle of action, explain the role and regulation of various metabolic pathways (e.g. beta oxidation, fatty acid and cholesterol synthesis);
• recognise and name the major metabolites of amino acid metabolism, name enzymes and characterise the principle of action, explain the role and regulation of metabolic pathways (e.g. ammonium detoxification and urea cycle);
• describe metabolic pathways in human metabolism that connect carbohydrates, lipids and amino acids and allow these groups of substances to transform into each other, name hormones that affect these transformations;
• name and explain complications related to dysfunction of biochemical pathways studied in the course (e.g. lactoacidosis and ketoacidosis);
• name and explain differences between biochemical processes of various tissues/organs (cellular metabolism) and their specific adaptations;
• learn methods required for basic biochemistry analysis performed in medicine.
1. Use of knowledge – ability to:
• explain how enzymes activity is affected, based on the mechanism of action of enzymes;
• explain how molecules are sequentially digested during digestion process, identify end products of digestion process;
• explain step by step using the appropriate metabolic pathways, carbohydrates degradation for energy generation and carbohydrate storage;
• explain sequentially with appropriate metabolic pathways, lipid breakdown for energy extraction and carbohydrates storage;
• explain sequentially using the appropriate metabolic pathways, the degradation of amino acids for energy generation, fate of the carbon skeleton and the ammonia detoxification;
• explain step by step using the appropriate metabolic pathways, interactions between fats and sugars and evaluate in which metabolic situations these transformations take place;
• explain the application and basic principle of biochemical tests of biological samples (blood and urine) used to determine the functional state of the human body.
2. Problem solving skills.
3. Skills to use scientific literature as a source of information.
4. Laboratory safety skills.
5. Communication skills gained through organized team work.
On completion of the course students will be able to:
• assess possible changes in the regulation of enzymes in various homeostatic disorders and predict the consequences on total metabolism;
• analyse possible changes on the digestive process with low activity of certain digestive enzymes, and predict consequences on the total spectrum of absorbed nutrients;
• analyse possible changes in human metabolism in the presence of some carbohydrate, lipid or amino acid pathway disorders and predict their effects on other metabolic pathways and human homeostasis;
• use the skills acquired in laboratory work – prepare and conduct laboratory experiment, use the relevant equipment and evaluate the results in further practical or scientific work;
• integrate knowledge of biochemistry as part of the knowledge of the individual by promoting a perception of the human as a single organism.
Study course planning
Study programme | Study semester | Program level | Study course category | Lecturers | Schedule |
---|---|---|---|---|---|
Medicine, SSNMF | 2 | Master’s | Required | Uldis Apsalons, Kalvis Brangulis, Ilze Izabella Dindune, Ilze Justamente, Kristiāna Kovtuna, Jeļena Krasiļņikova, Linda Laizāne, Mērija Agnese Meiberga, Ingus Pērkons, Jeļena Raudeniece, Dace Reihmane | |
Medicine, MF | 2 | Master’s | Required | Uldis Apsalons, Ilze Justamente, Kristiāna Kovtuna, Jeļena Krasiļņikova, Linda Laizāne, Mērija Agnese Meiberga, Ināra Nokalna, Ingus Pērkons, Reinis Putrālis, Jeļena Raudeniece, Dace Reihmane |