Probability (SL_104)
About Study Course
Objective
This course introduces students to probability and random variables and introduces probability with applications in order to get knowledge on fundamental probability concepts.
Prerequisites
Knowledge in calculus.
Learning outcomes
The student will:
1) independently define event, outcome, trial, simple event, sample space and calculate the probability that an event will occur;
2) demonstrate deeper knowledge in fundamental probability concepts, including random variable, probability of an event, additive rules and conditional probability, Bayes’ theorem;
3) recognize, distinguish and use the basic statistical concepts and measures;
4) recognize and comprehend several well-known distributions.
The student will have skills to:
1) derive probability distributions of functions of random variables;
2) derive expressions for measures such as the mean and variance of common probability distributions using calculus and algebra;
3) calculate probabilities for joint distributions including marginal and conditional probabilities;
4) develop the concept of the central limit theorem.
The student will be competent to:
1) to evaluate and solve problems independently;
2) prove some basic theorems of probability theory;
3) choose appropriately and apply the central limit theorem to sampling distributions.
Study course planning
Study programme | Study semester | Program level | Study course category | Lecturers | Schedule |
---|---|---|---|---|---|
Biostatistics, MFBS | 1 | Master’s | Limited choice |